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ABSTRACT

To accurately control any mechanism it is necessary to know the relationship a

between applied forces and the resultant motion. These forces may be simple to

compute, as is the case for many single degree of freedom machines; or they may

be quite complex. Two steps toward the accurate prediction of motion forces are

presented in this thesis: an experimental investigation of friction, and a study of the

sensitivity of robot inertial parameter identification methods to noise.

The friction study begins with an experimental investigation of the most basic

properties required for predictive modeling: repeatability and structure. Friction is

found to be surprisingly repeatable; position dependence is found, and a destabilizing

effect - the Stribeck effect - is observed at low velocity. The experimental work

is specific to a particular mechanism: the PUMA 560 arm; but many of the

observations, particularly the study of the Stribeck effect, will extend to a broad

class of machines. Using the friction model developed and an inertial model reported

elsewhere, open-loop control of the PUMA robot is carried out, demonstrating the

accuracy of the friction model.

When designing an identification experiment for a system described by non' inear

functions, such as those of manipulator dynamics, it is necessary to consider whether

the excitation is sufficient to provide an accurate estimate of the parameters in

the presence of experimental noise. \It is shown that the convergence rate and

noise immunity of a parameter identition experiment depend directly upon the

condition number of the input correlation matrix, a measure of excitation. The



sensitivity of an identification experiment to unmodeled dynamics is also studied;

a dimensionless measure of this sensitivity - Bias Susceptibility - is proposed and

related to excitation. The issue how exciting a trajectory may be is addressed, and

a method is presented to maximize the excitation. Two identification experiments

reported in the literature are studied; analysis of these experiments shows that

intuitively selected trajectories may provide poor excitation and that considerable

improvement results from employing the optimization to maximize excitation.

M4
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Chapter 1

Introduction

Friction is universally present in the motion of bodies in contact. The

modem science of Tribology seeks to explain the atomic details of friction. But

the universality of friction may also be understood from a different perspective.

Leonardo da Vinci, among his many investigations, studied the relationship between

friction and the music of the heavens. He knew the music to be produced by the

bumping and rubbing of the heavenly spheres, and he was concerned with the

possibility of friction between these heavenly bodies:

"Had however this friction really existed, in the many centuries
that these heavens have revolved they would have been cor. sumed by
their own immense speed of every day ... we arrive therefore at the
conclusion that the friction would have rubbed away the boundaries
of each heaven, and in proportion as its movement is swifter towards
the centre than toward the poles it would be more consumed in the
centre than at the poles, and then there would not be friction any
more, and the sound would cease, and the dancers would stop ..."

Leonardo da Vinci (1452-1519),
The Notebooks, F 56 V

Leonardo understood that friction is absent from the state of grace. Thus friction

is confined to this mortal world: friction is a consequence of original sin.

0



2 Chapter 1: Introduction Section I: Friction

Friction plays a role in the simpliest actions of living, such as walking, grasping

and stacking. In many cases of importance the forces of friction are not small. But

for all of this, in the discussion of dynamics for control of mechanical systems friction

is but little studied and often completely omitted. When friction is addressed, the

models are often those of Leonardo da Vinci or Charles de Coulomb. Experimental

evidence pertinent to the situation under scrutiny is rarely sought out or presented.

This arises, perhaps, out of the worth ascribed to problem independent solutions,

the impetus toward results that may be applied sine mutationibus mutandis to every

situation.

This is a study of friction in a particular machine: a dc electric robot with

spur gears and ball bearings. We shall find along the way a number of effects that

extend beyond the confines of this particular mechanism. But more importantly,

an example is presented of what may be achieved by mechanism specific study. The

potential for capturing friction forces in a predictive model is explored; and such

fundamental, but long neglected issues as repeatability and structure are addressed

directly. The issues addressed in this work - the fraction of friction forces that can be

predicted, the model components that are dominant, the characterization of friction

at low velocities, a demonstration of experimental procedure for determining basic

friction properties - will extend cum mutationibus mutandis to a class of mechanisms

far broader than that directly studied. After all, Leonardo's conclusions, derived

from the study of the motion of bricks on a board, continue after five hundred years

to dominate the design of control when friction is considered. A little experimental

work can go a long way.

The control of contact forces between environment and machine, that is force

control, presents a special challenge. This is due, in part, to the unforgiving coupling

gum 11
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Section I: Friction 1: Introduction 3

between actuation and applied force. When the environment and mechanism are

very stiff, there is no leeway between the control command and the contact force: a

change in control effort is reflected immediately by a change in the contact force.

Friction plays a dominant role in limiting the quality of force control. We are

accustomed to specifying the upper performance limits of continuously controlled

mechanisms: the maximum speed, the greatest motion. The simple theory, even

when extended by Leonardo's model of friction, fails to predict that there are lower

limits. But as a consequence of non-linear low-velocity friction, there are lower

limits to motion, a minimum speed, a minimum distance. These lower limits to

motion translate to limits on the fidelity of force control, substantial limits in the

case of many practical machines.

A sense of the challenge of force control may be had by considering, for a

particular manipulator, the motion corresponding to a small change of force. In

a typical configuration the PUMA arm exhibits an end effector stiffness of 20,000

Newton-meters (N-m) per radian. If the desired force resolution is one tenth of a

Newton (about one third ounce), at a typical radius of half a meter, it must be

possible to govern motions of the mechanism as small as 1/400,000 of a radian.

Comparing this to the workspace of joint 1, which is roughly 5 radians, gives a ratio

of desired resolution to total motion of 1 to 2,000,000. If this same requirement

were applied to other control systems, it would lead to an elevator for the world's

tallest building that could position its car with an error less than the thickness of

this page, or a disk head the position of which may be commanded to within a

tenth of a wave length of light. It is interesting to note the field outside of robotics

where active compensation of friction has been undertaken: telescope pointing. All

implementations of active friction compensation reported prior to interest in robotic
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force control involve tracking by telescope [Walrath 84; Gilbert and Winston 74].

The attainable pointing resolution is in the neighborhood of 1/4 arc second, which

gives a ratio of resolution to total motion of 1 : 5,000,000; not far from our goal

with the PUMA arm.

More compliant mechanisms will reduce the bandwidth and resolution require-

ments of force control. Work has progressed toward governing the oscillatory

behavior of compliant mechanisms [Cannon and Schmitz 84; Maples 85; Wang and

Vidyasagar 87] and, in work specifically focused on the need for compliance in force

control, towards achieving good positioning accuracy with compliant mechanisms

[Roberts 84].. One impact of increased compliance is improvement in the ability

of feedback control to compensate for friction induced errors. Attention is also

being given to lower friction actuators and transmissions for robots [Asada and

Youcef-Toumi 84; Pfeffer, Khatib and Hake 86). Brushless and direct drive designs

have shown tremendous reduction in friction [Asada and Youcef-Toumi 84] But,

given the fact of original sin, friction will continue to be with us. Friction modeling

will be important for compliant mechanisms, where active damping depends upon

accurate system modeling. And in the investigation of low friction designs, detailed

understanding of friction will be key to understanding the trade-offs among friction,

performance, weight, payload and cost. And, especially because of the destabiliz-

ing character of bearing friction near zero velocity, friction will continue to be a

performance limiting factor in force control.

The study of non-linear friction in servo-mechanisms has a long history. Tustin

examined the effect of backlash and non-linear friction in a feedback loop using a

vector graphic technique that anticipates the modern describing function analysis

[Tustin 47]. Tou and Schultheiss thoroughly study the impact on control of

II- =1@



Section I: Friction 1: Introduction 5

static and kinetic friction using describing function analysis (Tou 1953; Tou and

Schultheiss 1953]. More recently Townsend and Salisbury [87] have employed

describing function techniques to investigate a system similar to that studied by

Tou and Schultheiss. The analysis of Townsend and Salisbury extends that of Tou

and Schultheiss by paying careful attention to the regions of stability; they identify

a region of input-dependent stability that is likely to occur in experimentally tuned

controllers.

One motivation shared by the above authors has been to explain observed limit

cycle behavior that a purely linear system cannot exhibit. Tou and Schultheiss

[53] show the possibility of limit cycling during slow motions when the controller

includes integral terms. They propose the use of a velocity feedback term to

eliminate the oscillation and demonstrate the method using an analog simulation.

Townsend and Salisbury [87] also show the possibility of limit cycling when integral

control is used. Tustin (47], and in a qualitative way Gogoussis and Donath [87],

chose a different structure for his model of friction at low velocity and was able to

show the possibility of limit cycling when only proportional and derivative feedback

are used.

Before proceeding, several definitions are provided - words describing friction

are sometimes used imprecisely:

Tribology:

Literally, the study of rubbing; the name given to the modern study of friction
and wear of rubbing surfaces.

Static Friction (Sticktion):

The torque (force) necessary to initiate motion from rest. It is often greater
than the kinetic friction. S
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Kinetic Friction (Coulomb friction, Dynamic friction):

A friction component that is independent of the magnitude of the velocity.

Viscous Friction:

A friction component that is proportional to velocity and, in particular, goes to
zero at zero velocity.

Negative Viscous Friction:

A phenomenon sometimes reported or assumed in which the friction at low
velocities decreases with increasing velocity, a source of instability.

Break-Away:

The transition from rest (static friction) to motion (kinetic friction).

Break-Away Torque (Force):

The amount of torque (force) required to overcome static friction.

Break-Away Distance:

The distance traveled during break-away; that is, the distance over which static
friction operates, a consequence of the materials used and forces applied.

Dahl Friction or the Dahl Effect:

A friction phenomenon that arises from the elastic deformation of bonding sites
between two surfaces which are locked in static friction. The Dahl effect causes
a sliding junction to behave as a linear spring for small displacements.

Stribeck Friction or the Stribeck Effect:

A friction phenomenon that arises from the use of fluid lubrication and gives
rise to decreasing friction with increasing velocity at low velocity. See figure 1.3.

Deviation:

Many measurements are reported in this thesis that exhibit trial to trial
variation; deviation is a measure of the trial to trial variation: it is the square
root of the sum of the squared variations. Deviation is used as a measure of
variation rather than variance because the magnitude of the deviation can be
compared directly to the magnitude of the signal itself.
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There is no agreement on the structure appropriate for a model of servo-mechan- 0

ism friction. Mechanists and tribologists who have studied physical mechanisms

of friction find numerous phenomena, varying with the materials and surface

preparation used. Among this data there is evidence for decreasing friction with

increasing velocity [Bowden and Tabor 73], increasing friction with increasing

velocity [Bowden and Tabor 73], very short break-away distances [Rabinowicz

51], much longer break-away distances [Dahl 77], the presence of a static friction

component [Bowden and Tabor 73; Rabinowicz 511, and the absence of a static

friction component [Dahl 77]. Among control experimentalists who attempt to

model friction, the choice is often a kinetic plus viscous friction model, as shown in

figure 1.1 below [Gilbert and Winston 74; Walrath 84; Canudas, Astrom and Braun

86; Craig 86]. Control theorists, with a few exceptions, employ a static plus kinetic

plus viscous model, as shown in figure 1.2 [Tou and Schultheiss 53; Satyendra 56;

Bohacek and Tuteur 61; Shen 62; Shen and Wang 64; Townsend and Salisbury 87;

an exception is Tustin 47]. Tustin is important because his model incorporates

negative viscous friction. He alone is able to explain limit cycling in systems with

no integral control, a phenomenon observed in practical systems. Experimentalists

resist employing the static friction component because of its extreme dependence

upon velocity, whereas the theorists require it to explain limit cycling.

Feed-forward compensation of friction has been undertaken using (non-linear)

analog control [Gilbart and Winston 74]; and digital control [Walrath 84; Craig

86; Kubo, Anwar and Tomizuka 86]. Gilbart and Winston achieved a 6 to 1

reduction in the RMS pointing error of an optical tracking telescope by feed-forward

friction compensation. They adaptively tuned a kinetic friction parameter. Walrath

reports a feed-forward compensation scheme to point optical tracking instruments
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Figure 1.1 Shape of a kinetic and Viscous Friction Model.
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Figure 1.2 Shape of a Sticktion, kinetic and Viscous Friction Model.
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Figure 1.3. Shape of a Sticktion, Kinetic and Viscous Friction Model with a
Negative Velocity Dependence at low Velocities.

on a moving platform. He does extensive experimentation to develop and justify

his friction model, which is a modified Dahl model [Dahl 77]. Walrath's system

adaptively identifies one parameter and shows 10 to 1 reduction in the RMS

pointing error by the use of friction compensation. Craig [86], and Kubo, Anwar

and Tomizuka [86] have worked with friction compensation in robotics. Craig

incorporates friction parameters in the model for his work in adaptive control, but

does little to show that the friction parameters identify true physical processes

or improve control. Kubo, Anwar and Tomizuka are specifically concerned with

friction; they justify the use of kinetic friction compensation theoretically and

demonstrate it practically on a DC motor driven robot.

This thesis addresses a lack of basic experimental data concerning friction

in servo-mechanisms. Engineers building feed-forward controllers with friction

with rI' tion0



10 Chapter 1: Introduction Section I: Friction

compensation employ experimental data to adjust model parameters, but no careful

investigation of the properties of friction typical of servo-mechanisms has been

undertaken. The theoretical work cited above - Tustin; Tou and Schultheiss;

Satyendra; Bohacek and Tuteur; Shen; Shen and Wang; Townsend and Salisbury 87

- contains no reference whatever to experimental work involving servo-mechanisms.

In chapter 2 the experimental procedures used are described. In chapter 3 the

repeatability of friction phenomena is examined: any attempt at modeling and

compensation is predicated upon repeatability. The motion data show a correlation

between measured friction force and position. In chapter 4 this correlation is

examined and an experiment that has been highly successful in identifying spatial

dependencies is discussed. Chapter 5 addresses the relationship between friction

and velocity; an experiment that provided sensitive measurements of friction at

exceptionally low velocities is described. In chapter 6 friction-compensated free

motion is demonstrated: the friction model is adequate to precompute torques and

to move the arm under feed-forward, open-loop control. Cumulative position error

during open-loop motions was less than 10%. In the last section of chapter 6

a demonstration of force control is presented. And in chapter 7 the engineering

implications of this work are discussed and recommendations for the design of

control for friction-afflicted mechanisms are presented.

6
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Chapter 2

Experiment Design

The experiments reported here have been carried out with a PUMA 560 arm 0

controlled with the NYMPH computer [Chen et.al. 86]. Two procedures for

measuring friction have been used:

1. Measuring acceleration and subtracting computed inertial torques from known
motor torques;

2. Measuring the minimum torque necessary to initiate motion.

2.1 Acceleration Measurement

Measuring acceleration is a substantial challenge. Using a two-sided Kalman

smoother, acceleration can be estimated from recorded position data; however if

noise rejection is turned up to an adequate level, bandwidth is quite poor. In trials

with PUMA position data, acceptable noise rejection was determined to be 18 dB

reduction of white quantization noise, which gave an RMS acceleration deviation

of 0.3 rad/sec2. This level of noise rejection results in an effective bandwidth of

roughly 2 hertz, a sever experimental limitation. The Systron-Donner corporation

generously lent a mo -4 8160 rotational accelerometer to this project. This

extraordinarily sensitive instrument is specified to have a threshold and resolution

of 0.005% of full scale; in the case of this instrument, that is 1 milli-radian per
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second squared. The response of the instrument is flat to a second order roll-off at

40 hertz. An accurate acceleration measurement has been key to the measurement

of friction during motion.

2.2 Velocity Estimation

In most of the experiments presented here, velocity was estimated off line using

a two pass Kalman smoother running on position and torque data. This procedure

gives a reliable, unbiased estimate of velocity, and has a bandwidth of roughly

10 hertz. For the low speed trials reported in chapter 5, a real time velocity

estimate was required: a digital cross-over filter was implemented that had the

high frequency response of the integrated acceleration signal and the low frequency

response of the differentiated position measurement. The cross over frequency was

10 radians per second.

2.3 Contact Force Sensing

Measurements of contact force were made with the Stanford force sensing fingers

(see [Khatib and Burdick 86]). The force finger sensor consists of a three axis load

cell with a stiffness of 60,000 Newtons per meter. The sensitivity is roughly 0.01

Newtons, or 0.04 ounces.

2.4 Torque Control

The Unimate controller employs high gain current amplifiers to drive the motors.

During operational tests the current was observed to slew to a new command value

in less than 500 psec and hold that value to within 0.5%. The motor model used

here, the standard dc motor model, provides that torque is proportional to current I
St
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and independent of velocity; a multiplicative torque ripple of a few percent may

be included. The PUMA motors in particular, which are Magnetic Technologies

model 3069-381-016, are specified to have a torque constant of .261 Newton-meters

(N-m)per Amp, and an average to peak ripple of 4% at 25 cycles per revolution. The

maximum available motor torque is 1.70 N-m; reflected through the transmission,

this gives a maximum torque of 100 N-rn at joint 1.
0?

2.5 Break Away Torque

The break-away torque was measured by stopping the arm, settinq the torque

to zero (or to the gravity compensation value, if any) and ramping up the torque

in 0.2 Newton-meter steps at a rate of 40 steps per second. Break-away was

established when motion (one or more shaft encoder pulses) was observed during

two consecutive steps. The torque applied 4-ing the first interval with motion was

taken to be the break-away torrtre. highly variable "wind-up" was observed in the

time prior to steady motion, and labeling the first shaft encoder pulse to arrive as

the break-away event led to non-repeatabie results. The step size and rate of this

experiment were chosen to maximize repeatability.

2.6 Linear Parameter Estimation

When parameters to be identified apl. :ar linearly in a model, as will be the

case in the main of these experiments, solving the normal equations produces an

estimate of the parameters which minimizes the squared error. The estipiation is

constructed in the following way:
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If the model may be written

T(k) = 0'(k) 0* (2.1)

where r(k) is the torque applied at time step k;

0 is the regressor vector, it contains functions of the manipulator state;

e is the parameter vector, it contains fixed parameters;

G* is the vector of true parameter values;

9 is the estimated parameter vector;

k is the time step in the process;

then the normal equations may be constructed by writing

[ '(O) t 9O

r(K)J L 4'(K)

and estimating the parameters according to (see section II, chapter 11.7):

9 = [*(] - $'T (2.2)

When the normal equations are used to estimate friction parameters, 4' will

commonly comprise the joint acceleration, velocity and sign(velocity):

mass 1
0 = e viscous friction

sign(l) kinetic friction]

So that

,r(k) =mass * 4a(k) + (viscous friction) *4 (k)

+ (kinetic friction) * sign(4(k)),

rI)=ms 1 k vsosfito)*4k S 'I"i
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Once the parameters are computed, it is possible to compute the residual error

according to

T= T -4 (2.3)

where T is torque not predicted by the model.

2.7 Non-Linear Estimation

In chapter 5 velocity parameters which appear in an exponential friction model

are estimated. This was done by a simple, manual, gradient search method. The

cost function minimized was squared model error; the gradient search continued

until no further improvement was possible.

2.8 Low Pass Filtering

In some cases below, the data presented have been low pass filtered. To avoid

the phase lag associated with causal filter implementations, this has been done off

line using convolution with a gaussian curve. Where a cut-off frequency is cited,

this is the width to half maximum of the filter frequency response.

S

S

0



Chapter 3

Repeatability

Perhaps the most fundamental issue in an effort to model any process is

repeatability. Whatever hope exists of capturing the process in a predictive model

is predicated upon repeatability. Tribologists have studied the variance of friction

forces in carefully controlled situations [Rabinowicz, et. al. 55; Rabinowicz

56]. But it is not straightforward to extrapolate from these data to complex

mechanisms. Repeatability may be inferred from the successful compensation of

friction demonstrated in [Gilbert and Winston 74; and Walrath 84]. Walrath in

particular presents correlation data that suggest a high degree of repeatability. But

neither of these investigators explicitly addresses repeatability.

Here I undertake to measure repeatability in the simplest possible way: by

playing out a pre-determined sequence of torques and observing the motion. A

stiff PID controller, the standard Unimate controller, is used to pre-position the

arm. The industrial controller is able to attain a desired position to within ± 0.001
1-

radians. Using precomputed torques, as opposed to closed-loop control, ensures that

the applied torques are the same from trial to trial. A typical result is presented in

figure 3.1 where the velocity profiles of three successive motions are shown.

Prior to collecting these data the arm was 'warmed up' by a minute of

motion throughout the workspace. The effects and importance of warming up the

16
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Figure 3.1 Velocity resulting from the application of a constant torque to joint
one of a PUMA 560 robot.

mechanism are discussed in chapter 4.1. The torque sequence used is shown in

figure 3.2. The three velocity profiles of figure 3.1 show considerable structure: the

arm repeatedly accelerates and decelerates in a roughly sinusoidal pattern. If the

velocities are plotted as a function of position, the correspondence becomes more

dramatic, as shown in figure 3.3.

Using accelerometer data it is possible to determine the mass, viscous friction

and kinetic friction observed during the motion by solving the normal equation,

(2.2). Equation (2.3) then gives the residual torques, the torques which are

unexplained by the model. The residual torques for the motions of figure 3.3 are

plotted in figure 3.4, here they are shown as a function of position.

By sampling laterally across several data sets, it is possible to estimate the

variance in friction torque. To produce figure 3.5 the residual friction torques
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Figure 3.2 Torque Applied during each of the three motions depicted in
figures 3.1.
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Figure 3.3 Velocity Profiles of Figure 3.1 plotted against position.
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Figure 3.4 Torques that are Unexplained by a Mass plus Viscous plus Kinetic
Friction Model, plotted against position.
(Low Pass Filtered to 20 Hz.)

were determined as they were for figure 3.4. At each time step the residuals of

five motions (including the three of figure 3.4) were averaged and the variance

determined. Figure 3.5 is a plot of the average acr-oss these five moves; note that

large residual torques occur at the beginning and end of the trajectory. Figure 3.6

is more interesting; it is a plot of the standard deviation in each of the bins made by

the averaging process which gave figure 3.5. The standard deviation is remarkably

flat.

Figure 3.4 shows a high degree of position dependence in the torque error. This

dependence is confirmed in figure 3.7, which is a plot of average and deviation in the

variance of the five trials, as in figures 3.5 and 3.6, but here they are averaged and

plotted as a function of position. During the cruise portion of the trajectory, the

variance of figure 3.7 is quite small. In table 3.1 the magnitude of the friction torque,

R
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Figure 3.5.a Average of the Unexplained Torque During Five Repetitions of the
motion of Figure 3.1. The Data have been binned by Time. Scale
chosen to show peaks.
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Figure 3.5.b Average of the Unexplained Torque During Five Repetitions of the
motion of Figure 3.1. The Data have been binned by Time. Scale
chosen to show detail and match figure 3.6.
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Figure 3.6 Standard Deviation of the Unexplained Torque During Five
Repetitions of the motion of Figure 3.1. The Data have been binned
by Time.

the residuals and residual deviations are presented. The deviation of the residuals is

of greatest interest: the deviation is a measure of the non-repeatable component of

the friction process. The degree of repeatability seen here is remarkably great, the

deviation in friction between identical trails is only 1% as great as the magnitude of

the friction itself: 0.107 (N-m) of Deviation versus 10.407 (N-m) of Friction.

The reduction deviation arising from correlating the friction data with position, S

from a = 0.284 to or = 0.107 corresponds to a Fisher statistic of F(1000,500) = 12.1.

Use of the Fisher statistic is described in greater detail in chapter 5.1 below.

Let it suffice here to say that the F statistic can be used to test whether an

improvement in model accuracy is achieved by chance or by actually explaining an

underlying systematic process. In this case an F(1000,500) of 12.1 yields a confidence

of 99.99999999% that a systematic correspondence between position and friction

exists.

In this chapter a fundamental aspect of friction has been addressed: repeata-

bility. Surprising repeatability is observed. Study of the friction force that is

0
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Table 3.1 Magnitude of Friction Torque Captured by a Kinetic plus Viscous
Model and of the Residuals and the Deviations of the Residuals.

Friction Signal Magnitude
(N-m)

Modeled Friction 10.407

RMS Residual, Sampled According 0.282
to Time Along the Trajectory

Mean Standard Deviation of the 0.284
RMS Residual, Time Sampled

RMS Residual, Sampled According 0.379
to Position Along the Trajectory

Mean Standard Deviation of the 0.107
RMS Residual, Position Sampled

EP

z
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0
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0 -Average Friction, 5 Tril.s
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>
"1 -0.S 0 O.5

.0
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Figure 3.7 Average and Deviation of the Unexplained Torque During Five
Repetitions of the motion of Figure 3.1. T he Data have been binned
by Position.
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not explained by a kinetic plus viscous friction model shows a substantial compo-

nent which, with very high confidence, is systematically correlated with position.

Measuring this position-dependent friction will be the subject of the next chapter.

S



Chapter 4

Break-Away Experiments

The break-away experiments were conducted as described in section 2.5. The

beauty of the break-away experiment is its ability to sample friction at extremely

high spatial frequency. The break-away experiment does not suffer from problems

of mechanical compliance, phase lag and instrument bandwidth that are associated

with motion experiments. The data are useful because they align so well with

the position-dependent disturbance observed in the motion data. An example of

the alignment between break-away data and the unexplained friction in the motion

data is shown in figure 4.1, where the solid trace is the error torque experienced

during a motion, similar to that presented in figure 3.4. The dashed trace is taken

from break-away data, suitably scaled and offset to align with the motion data.

Both traces have been low pass filtered to 20 cycles per radian. As an aside, the

break-away data were collected on June 6, 1987, and the motion data on January

12, 1988, six months and a thousand machine operating hours later.

4.1 Experimental Issues in Measuring Break Away Torque

Four aspects of this experiment were tuned to achieve maximum repeatability:

a warm up exercise was developed, fine sampling was used, the torque rate was

tuned, and the definition of break away selected to maximize repeatability. Early in

24
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, --- From Breo Away Experiment
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Figure 4.1. The alignment of break-away friction data and Motion Friction Data.

this experimental work it was observed that after an extended period of inactivity

(over night) the friction would start high and diminish quickly to a steady value.

A series of empirical trials showed the motion friction to come to its steady value

after a minute of moderate velocity activity spanning the work space. The motion

friction would remain at its steady value through tens of minutes of inactivity. The

break away friction was observed to increase with over night inactivity, as does the

motion friction. A faster process, affecting the friction after minutes of inactivity,

was also observed in the break-away experiment. The underlying physics of neither

process is known to the author; as a hypothesis, I suspect that the longer time

process is due to oxidation at the surface of the lubricant, and that the shorter time

process is due to the physical displacement of lubricants as part of the Stribeck

effect (se chapter 5.5). The longer time process was addressed with a vigorous

motion a .he beginning of each session. While sampling the break away friction, a
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shorter back and forth motion, spanning the space to be sampled during the coming

interval, was carried out about once per minute.

The break away data were observed to have features at extremely high spatial

frequencies. The initial sampling density was inadequate and problems arose from

aliasing and bias introduced by the sample location selection. To collect break

away data at a spatial resolution higher than that achievable by the standard

industrial controller, an open type sample location selection was used. The Unimate

controller can achieve commanded positions to within ± 0.001 radians, whereas

the shaft encoder has a resolution ten times finer. Rather than attempting to

control the motion to a desired sample point, a sample was simply collected at the

location of the arm. Each sample moves the arm forward a distance of several

bins. After many (possibly ten) sweeps over each region nearly all of the locations

will have been sampled. Experience showed that some locations were unreachable,

either by feedback control or by chance !! I believe that the steep friction gradient

surrounding these points made them unreachable. Quadratic interpolation was later

used to estimate the friction at these locations. For the table building experiments,

2,000 bins per radian were used. The highest prominent spatial frequency observed

is 355 cycles per radian; thus 2,000 samples per radian provides nearly a factor of

three head room above the Nyquist limit.

The break away experiments required considerable time (60,000 data points x2

directions x3 joints x2 seconds per point = 200 hours). It was therefore important

to maximize the rate of the experiment. As roughly 80% of the experimental

time was spent ramping up the torque, the size of torque step and step rate were

critical experimental issues. The results of several trials are presented in table 4.1;

0.2 Newtons per step and 40 steps per second was chosen as a good compromise
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between repeatability and speed. The result of this effort toward achieving good - S

repeatability in the break away measurements is shown in figure 4.2. The three

lines of the figure are the mean measured break away force in each position bin, and

plus and minus one standard deviation. The mean break away force of figure 4.2 is

-8.43 N-m, the mean standard deviation within the bins is .237 N-m, or 3% of the

mean friction.

S

Table 4.1 Measurement of Deviation of Break Away Friction Measurement as a
Function of the Experiment Parameters.

Sample Rate Torque Step Mean Break Away Standard Deviation
Size Torque

(Hz) (N-m) (N-M) (N-m)

40 .2 8.51 0.165
40 .1 8.63 0.151
40 .4 9.00 0.330
80 .2 9.10 0.220
80 .1 8.86 0.124

Initially the break away torque was taken to be that applied when the first

shaft encoder pulse was observed. This led to highly non-repeatable results. Trials

were made requiring two, three and four shaft encoder pulses to certify motion

and determine the break away torque, but with little improvement in repeatability.

Imposing what is in essence a velocity requirement, that shaft encoder pulses come

in two consecutive intervals, markedly improved the repeatability and was adopted

as the condition to certify break away. The combination of 0.1 N-m steps at 80

Hz, which is suggested by table 4.1, was rejected because of the velocity and thus

acceleration required to achieve two shaft encoder pulses in consecutive sample

intervals. The lack of repeatability in the observation of the initial pulse has been

connected to the Dahl effect (see chapter 5.4).

W " 11 11111IN N ' 'll
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4.2 Building the Correction Table

The break-away experiment provides an excellent means to fill out a friction

correction lookup table. To capture phenomena at spatial frequencies as high as

355 cycles per radian a sampling frequency of 2,000 bins per radian was selected.

To prepare a lookup table for 5 radians of joint motion, 10,000 bins were needed.

Collecting 60,000 data points allowed averaging and improved repeatability.

Examination of the curves of figure 4.1 suggests that there should be a few

dominant spatial frequencies. The major periodicity makes 3 cycles across the

figure, and a less prominent periodicity appears at about 5 cycles per cycle of the

major periodicity. A spatial FFT of the break-away data fails, however, to reveal

these periodicities, as shown in figure 4.3. Figure 4.3 is a spatial FFT of the joint 1

break-away data set, sampled at 2,000 samples per radian, low pass filtered to 100

I
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cycles per radian and pre-processed with a Blackman-Harris window. The result

is a flat transform, not showing the dominant periodicities that the eye sees in

figure 4.1. The major periodicity of figure 4.1 makes 2.8 cycles per radian or 15

cycles per revolution of the joint. This is the rotation frequency of the intermediate

gear of joint one, suggesting that periodic friction phenomenon is related to a

non-uniformity of the intermediate gear. The higher frequency apparent in figure

4.1 occurs once per revolution of the motor, suggesting a non-uniformity in the

motor or motor gear.
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Figure 4.3 Spatial FFT of the Break Away data for Joint 1 of a PUMA 560 Arm.

Note the lack of Periodicities Apparent in Figure 4.1 or Figure 4.7.

To correct for motion error a lookup table was constructed using data from the

break-away experiment. The velocity profile of a position friction compensated open-

loop motion is shown in figure 4.4. Applying the position-dependent compensation
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from the lookup table reduced the variance of the velocity during the motion. It was

observed that the table correction was most effective at lower spatial frequencies, the

variance in velocity and acceleration was measured with correction tables applied

that were low pass filtered to dc (0 Hz), 0.8, 4.0, 20, 100, and 500 cycles per radian

(data collected at 2,000 samples per radian). The deviation (square root variance)

in velocity measured along the motion of figure 4.4 is shown as a function of the

table bandwidth in figure 4.5. In figure 4.6 the deviation in acceleration is shown.

.. .. I.... I.... .... ... I.... ...

U -Desired Velocity

L-ActuoL. Motion Vetoci ties

N0.2

U

20.1
W
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Figure 4.4 Velocity Profile Recorded During an Open-Loop Motion of the Arm
with Position-Dependent Correction Applied.

The best reduction in velocity deviation is roughly a factor of 2. There is no

apparent reduction in acceleration deviation. The table lookup scheme predicted

the position one and a half sample times ahead, to try to select the position

corresponding the the middle of the sample interval during which the torque would

11 .........
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Figure 4.5 RMS Deviation in Velocity as a function of the Highest Spatial
Frequencies of the Position-Dependent Friction Correction Used.
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Figure 4.6 RMS Deviation in Acceleration as a function of the Highest Spatial
Frequencies of the Position-Dependent Friction Correction Used.
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be applied. The break away data were low pass filtered to 20 cycles per radian and

then compressed into a look table with a sampling frequency of 200 bins per radian.

At the moderate arm velocity of 1 radian per second, the arm would cross only one

bin during one 5 milli-second cycle of the control system. No attempt was made to

average the correction from several bins according to the velocity of the ann.

A low pass filter of 20 cycles per radian was chosen for the correction table. An

offset was added to make the lookup table zero-mean: kinetic friction correction

is provided as a separate term. The resulting correction torque table is shown

graphically in figure 4.7, this correction was used to generate the motion of figure

4.4, the velocity profile of which should be contrasted with those of figure 3.1, for

which no correction table was used.
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Figure4.7 Lookup Table Correction to Torques Applied at Joint One of the
PUMA 560.
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In this chapter an experiment that can accurately measure friction as a

function of position is presented. Again the repeatability is striking, this time

the repeatability of the torque required to achieve break-away. The importance of

modeling the position-dependence in the friction for control will depend upon the

application. But the importance of modeling this effect for other experimental work

is tremendous; the model of position dependence will be used many times in what

is yet to come.

I



Chapter 5

Friction as a Function of Velocity
(Negative Viscous Friction Revealed)

The control engineer often assumes a viscous friction model. The tribologist

rarely includes any velocity dependence at all, and when he does it is as likely to

be negative as positive. Based on the experimental work presented here, the kinetic

plus viscous friction model seems very accurate at velocities above a minimum

critical velocity. Below the critical velocity, decreasing friction with increasing

velocity is observed. The Stribeck effect is strongly indicated as the cause of this

unusual friction behavior.

The relationship between friction and velocity has been measured in three ways:

1. Open-loop, steady torque;

2. Closed, stiff velocity loop, constant velocity;

3. In contact, an open-loop torque ramp against a compliant surface.

Each of these experiments offers an advantage: the open-loop gliding motions

provide a test bed for measuring the repeatability of the friction forces - a basic

objective of this research - and to test for the dependence of motion friction upon

position and load. The closed loop control provides a means to penetrate the

34
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unstable regime with a realistic control experiment. And the compliant motions -

the most successful experiment of this research - provide a means of mapping the

entire regime of unstable velocities.

Figure 5.1 is a plot of friction as a function of velocity, measured on joint

one of the PUMA arm. These data were collected by applying a steady torque

and observing the average resulting velocity. The position-dependent friction was

compensated by a zero-mean table lookup torque.E
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Figure 5.1 Friction Torque as a Function of Velocity. (Note that the kinetic and
viscous parameters are different for positive and negative direction

rotations.)
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5.1 Analysis of Variance in the Motion Friction Data

Figure 5.1 is based on five measurements of velocity, at each of four positions, at

each of four steady state torques, in the positive and negative directions: a total of

160 measurements. This data set is sufficient to allow the use of standard analysis

of variance techniques to test whether separate positive and negative direction

parameters should be used, and to test whether the motion friction is dependent

upon position. The analysis of variance (ANOVA) is a technique that allows the

variance explained by the extension of a model to be compared with the residual

variance. When linear estimation is used, adding parameters to a model will nearly

always result in an improvement in the fit of the model to the data. Using ANOVA

and the F statistic, a standard test of significance, it is possible to determine

whether the improvement given by adding model parameters is significantly better

than chance, and thus justified. The test boils down to comparing the improvement

achieved per degree of freedom added to the model, the MST, with the residual

variance per degree freedom, MSE. If the extra parameters have nothing whatever

to do with the source of variance (which may simply be random), one would expect

the F statistic, F = MST/MSE, to be nearly one. A large F statistic indicates that

a lot of variance is explained by the extension of the model and that the increased

model size is justified. The threshold F statistic is a function of the confidence level

required and the number of degrees of freedom involved.

The hypothesises to be tested are:

Hypothesis 1: The model should include separate kinetic and viscous friction
parameters for the p( "ive and negative rotation directions.

iS
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Hypothesis 2: There is position dependence in the kinetic and viscous
parameters, and separate parameters should be used for each
of the four starting points used. This would be a position
dependence arising during motion, separate from that corrected
for by the table lookup compensation.

The variance measures are defined to be:

MST: Mean squared error explained by the use of a larger model.

MSE: Mean squared error still unexplained, even with the use of a larger model.

Table 5.1 ANOVA Testing of Hypothesis 1 and 2.
(Squared errors are in units of torque (N-m) squared.)

Threshold Accept
MST MSE F F, 95% Hypothesis?

Confidence

Hypothesis 1 13.209 0.00605 2182.0 2.15 Yes
(F 2,28)

Hypothesis 2

Positive 0.00475 0.00295 1.61 9.03 No
Direction (F 6,8)

Negative 0.00828 0.00847 0.98 9.03 No
Direction (F 6,8)

The use of positive and negative direction kinetic and viscous parameters is

strongly indicated (Hypothesis 1). The position dependence of the kinetic and

viscous parameters (Hypothesis 2) is not supported, the F value of 1.61 is little

better than chance and the F value of 0.98 is worse than chance.
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5.2 Friction at Low Velocities

Stick-slip oscillation during low speed motion has been observed by many

investigators; and a sizable literature exists studying the contribution of static

friction to this oscillation: [Tou and Schultheiss 53; Satyendra 56; Bohacek and

Tuteur 61; Shen 62; Shen and Wang 64; Kubo, Anwar and Tomizuka 86; Townsend

and Salisbury 87]. In all of the above reports, describing function analysis is applied

to a simple sticktion model, such as that of figure 1.2; the outcome is oscillations

when integral control is used. None of the work based on a simple sticktion model

can explain oscillation without an integral control term. It is odd that none of the

authors recommends control without an integral term.

During unrelated experimental work at Stanford (Khatib and Burdick 86]

unstable motions were observed even when no integral control term was used.

This apparent conflict between theory and practice remained a quandary until a

much-neglected paper by Tustin [47 came to light. Tustin studies this effect under

the assumption that friction follows an exponential curve from its static value to its

kinetic value. Tustin's model is:

F(v) = Fo - Fc(1 - e(v/vc)) + F v (5.1)

where F(v) is the friction as a function of velocity;

FO is the static friction;

Fc is the difference between static friction and kinetic friction;

F. is the viscous friction parameter;

v is the motion velocity;

Vc is a constant with units of velocity giving the characteristic

velocity at which the system transits to kinetic friction.
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Tustin predicts oscillations at low speed, even in the absen'ce of integral control.

Tustin provides no experimental evidence, either direct or cited, to support his

choice of model structure. None-the-less, Tustin's contribution stands out: it

explains an observable phenomenon neglected by a host of authors.

Tustin's hypothesis suggested an important path to pursue. To measure the4m
motion friction at low velocities, a stiff velocity control loop was implemented and

the average torque required to sustain steady motion was measured. With a sample

rate of 200 Hertz and using the first difference of position as an estimate of the

velocity, it was not possible to implement a velocity error gain greater than 50

Newton-meters (N-m) per rad/sec. This gain permitted a minimum velocity of 0.15

rad/sec before the onset of stick-slip. By integrating the accelerometer signal, the

velocity error gain could be increased to 90 N-m per rad/sec, which allowed testing

motions as slow as 0.015 rad/sec. A velocity of 0.012 rad/sec was achieved with

direct accelerometer feedback. Note that using only the position measurement and

a simple control structure (the standard industrial implementation), the apparent

minimum velocity of 0.15 rad/sec is 7% of the maximum velocity achievable at the

joint.

The measurements made with a stiff velocity loop are shown in figure 5.2, a

downward bend in the low velocities is clearly evident. Five samples were taken

at each velocity, from this the variance was estimated giving the 90% confidence

intervals shown.

Fitting Tustin's model to the variance weighted data gives Vc = 0.019 rad/sec. 0

The friction is given by:
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F(v) = 9.56 - 1.13(1 - e(-/0"019)) + 4.94 v (N - M).

(Viscous friction term taken from the fit to high velocity data).
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Figure 5.2 Friction as a Function of Velocity at Low Velocities, fit with Tustin's
Exponential Model.

5.3 Friction During Compliant Motions

The data collected by closed loop motions showed clear evidence of an upward

turn in the friction curve at low but significant velocities. However the model

and experiment were unsatisfactory in two respects: the model did not fit the

data well, the lowest velocity data point showing a 2 standard deviation excursion;

and no measurements could be made at extremely low velocities, a velocity regime

important to force control. Data collected in a preliminary force control experiment

I



Section I: Friction 5.3: Friction During Compliant Motions 41

showed both a structural flaw in the model and a means to collect data in the

extremely slow regime. Figure 5.4 shows the result of an open-loop force move. In

this trial, the arm, with a force sensor, was pressed against a hard surface, and the

torque is ramped up to a value well above static friction, and down again. The

configuration of the arm, actuation and sensor are shown in figure 5.3. A number

of features are evident in this motion, but one stands out: there is no stick slip

behavior in the resultant force trajectory. Tustin's model predicts stick slip down to
0

zero velocity. The shaft encoder data from the trial of figure 5.4 is shown in figure

5.5; the motion is extremely slow, about 330 micro-radians (pR) per second.

Hard Surface /

Spring
I Force SensorLink 3

Joint 1
Applied Torque

Figure 5.3 Apparatus of the Compliant Motion and Force Control Experiments.

I
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Figure 5.4 Applied Torque and Measured Force (scaled by radius) for a Motion
in Contact with a Hard Surface.

Figures 5.4 and 5.5 show that by applying varying force between a manipulator

and a compliant surface very slow motion can be achieved. The motion velocity is

given by

=(11k) x i

where q is the estimated velocity;

k is the stiffness of the combined manipulator and environment;

i- is the torque rate.

Data were acquired by this means using a number of coil springs. The springs

yielded effective stiffness from 450 to 12,000 N-m per radian. Applying a torque
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Figure 5.5 Position Reading During the Motion of Figure 5.4.

ramp with a rate of 10 N-in per second yielded velocities ranging from 0.0008 to

0.022 radians per second. The study of low speed friction required exceptionally

sensitive measurement of velocity and careful accounting of forces. The data

analysis led to the observation of the Dahl effect IDal 68]. The Dahl effect, which

has substantial importance for force control, had to be compensated to achieve an

accurate measurement of low velocity friction.

The first experimental task was to develop the ability to measure velocities of

hundreds of micro-radians per second. Careful study of the noise processes of the

rotational accelerometer and the force sensing fingers was required. Systron Donner

specifies a threshold and resolution for the loaned accelerometer of 0.005% of full

range, substantially below the quantization of the twelve bit A/D converter. The

range of the A/D converter and full scale of the instrument are well matched; but

when the output signal of the instrument is small, it is possible to make better use

IrU
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of the resolution of the A/D converter by increasing the gain of the analog amplifiers

buffering the accelerometer signal. A computer controlled variable gain amplifier

permitted an 8x multiplication of small accelerometer signals thus reducing the

effect of quantization. Simpson's rule integration replaced Euler integration in

off-line processing to improve the estimate of velocity; and a sensitive bias null that

used an average of many samples was implemented. The combined effect was an

order of magnitude reduction in the error in position estimated from the second

integral of acceleration, from 1 part per thousand to 1 part per ten thousand.

During compliant motion with constant stiffness, velocity can also be estimated

from the derivative of force:

4= (11k) x

where f is the derivative of measured force.

Note: The friction, applied torque and torsional stiffness are measured in rotational
units. Here the Contact forces and stiffness are measured in linear units.
Conversion is made by scaling by the appropriate radius, 0.83 meters for
most of this work.

As the stiffness, k, is large, reasonable force rates correspond to very small

velocities. The force fingers proved to be substantially more sensitive than was

previously thought. Adjusting the signal conditioning amplifier gain to give a good

match to A/D converter range resulted in an RMS noise power of 0.01 Newtons,

mostly at 60 Hz. The fingers however, suffered from considerable slow drift. These

effects gave changes in bias in the range of 0.1 Newtons; careful attention to

maintaining the null reading of the sensor was required.

Figure 5.6 shows both the estimate of velocity derived from the acceleration

signal and that derived from the force rate. The correspondence is fantastic, even
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at extremely low velocities. This gives good confidence that both methods of

measurement are quite accurate. The integrated accelerometer signal, merged with

the derivative of the position signal in a cross-over filter, was used as the velocity

estimate.

Velocity, Integroted AcceLerotion
9.6688Velocity, Differentiated Force

N,
..

0

>.

.- ,. 9-.
.4

> -B.6604

6 5 10 15 26
Time (seconds)

Figure 5.6 Velocity Measured during slow motion by Integration of
Acceleration and by Differentiation of Contact Force.

In addition to accurate force and velocity sensing, the measurement of friction

at extremely low velocities depended upon accurate accounting of other forces

affecting the motion. In the simple model of compliant motions, friction is given by:

-.diou i a
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Friction Torque = Applied Torque - Measured Contact Torque

- Motion Torque.

The applied torque is known, the contact torque may be determined from the

force sensor measurements by scaling by the moment arm; and the motion torque is

computable from the measured accelerations and the known inertia. The resulting

estimate of friction force for an early trial is shown in figure 5.7. By combining

the velocity and friction friction data, a plot can be made of friction as a function

of velocity, as shown in figure 5.8. At first it was believed that the open curves

of figure 5.8 were the result of a hysteresis like process in the friction, that the

friction level was somehow lower during deceleration than acceleration; simple lack

of repeatability was also suspected as the source of the spread. However, study of

several different trials frustrated explanation in terms of a sensible, velocity-related

process; and examination of several identical trials showed the repeatability to be

quite good. Insight came from noting that the spread was greater for motions with

softer springs, i.e., those that covered greater distance. Comparison of the spread

with the position-dependent correction of chapter 4 showed a high correlation.

Figure 5.9 is the result of compensating for the position-dependent friction with:

Friction Torque = Applied Torque - Measured Contact Torque
(5.2)

- Motion Torque - Position-Dependent Correction.

Combining the friction measurements of a number of trials with different spring

stiffnesses gives figure 5.10, not yet a repeatable measurement of friction as a

function of velocity. Again the study of motions carried out with different spring

stiffnesses provided the clue to sorting out simultaneous processes. The several I
1115
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Figure 5.7 Compliant Motion Friction Force Plotted Against Time.

curves of figure 5.10 show different angles of rise from zero friction at zero velocity

to a relatively steady friction level at higher velocities. The length of this rise was

seen to be variable in terms of time, and variable in terms of velocity, but roughly

constant in terms of position change. This observation led to the hypothesis that

the Dahi effect was behind the scatter of friction measurements.

S1

I
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Figure 5.8 Compliant Motion Friction Force Plotted Against Velocity.
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Figure 5.9 Data of Figure 5.8 Corrected According to Equation 5.2.
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FigureS.10 Friction data from several Trials, Corrected According to
Equation 5.2, but not Corrected for the Dahl Effect.

5.4 The Dahl Effect

Dahl's work with friction analysis and modeling is the work on friction best

known to the controls community [Dahl 68, 76, 77]. After studying experimental

work with the friction of ball bearings done by H. Shibata at the Aerospace

Corporation, Dahi proposed that a process of plastic deformation and failure

occurs during the transition from static to kinetic friction. These processes had

been previously described and ingeniously demonstrated by radiological techniques

[Bowden, Moore and Tabor 43; Rabinowicz and Tabor 511; Dahl's development is

apparently independent. Intuitively the process is this: the asperities of one surface

weld to those of the other when the two are in contact for an adequate time. When

motion begins the separation is not immediate, but rather the asperities deform in
0fashion comparable to that of the bulk material. This process entails both elastic
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and plastic deformation, and leads to hysteresis if the motion is reversed. Figure

5.11 is taken from [Dahl 77], friction is plotted as a function of displacement -not

velocity - for a cyclic motion of the bearing. Over the linear region of the curve, that

near zero displacement, the process is conservative. A ball bearing, for example,

can be observed to rock back and forth on a flat hard surface under the influence of

this effect [Dahl 77].

X'. DJSPLACEENT FIROM RAIL REIVIRSAL POINT. in.
0 3 4 6 1 8 9

2-

SPRELOAD. FP - 12 b

4 -0.563 degin.
40 ~0.56 il-?m

Figure I1. New Bearing Hysteresis Loop.

Figure 5.11 Friction Plotted as a Function of Position for a Ball Bearing
Apparatus (taken from [Dahl 77], reprinted courtesy of author).
Note the linear relationship between force and displacement for
small displacements.
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Rabinowicz [51] did a brilliantly simple experiment to measure the transition

distance from static to kinetic friction. With an apparatus not unlike that of

Leonardo da Vinci, Rabinowicz studied the sliding motion of blocks on a flat

inclined plane. He would initiate motion by rolling a ball a prescribed distance

down the plane to strike the block, thus delivering a known impulse. The

relationship between impulse, sliding distance, plate slope and lubricant yielded

information about the transition from static to kinetic friction, among other things.

For lubricated smooth metal surfaces, the transition distances lie in a range from

1 to 7 microns (pm), roughly the size of the surface asperities (the micro-bumps).

Shibata's data show a typical transition distance that is much greater, roughly 200

microns. This inconsistency and Rabinowicz's evidence for transition on a scale too

small to be observed discouraged investigation of the Dahl model in this work. Only

when examination of the compliant motion data strongly suggested the presence of

the Dal effect on an observable scale was the possibility studied.

The inconsistency of distance scales is resolved by considering that Rabinowicz

was studying the motion of blocks on flat surfaces while Shibata was studying the

motion of ball bearings. When a ball is rolling, the relative translation across

the interface between the ball and contacting surface (due to part deformation)

is much smaller than the motion of the center of the ball. Dahl's friction model

is not predictive. Neither Dahi nor investigators who have employed his model

[Warath 84] have attempted to relate the transition distance of the Dahl model

to the micro-morphology of the surfaces in contact. However, such a relationship

may be derivable, as suggested by table 5.2. The transition distance for Dahl [77]

was computed from the geometry of the apparatus used: 6 mm balls rolling in a

40 mm diameter race. The ball translation distance of 200 microns corresponds to

.... i ,,,., v -. a, r~r ,, .IM,,
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a separation of 6.7 microns between opposing faces of the friction interface. For

the simple, inelastic model the translation is mostly strain rather than shear. A

detailed study of the elastic contact (Hertzian contact) should be conducted to

relate ball translation to shear between the boundaries and the distance of the Dahl

effect to the size of the asperities. The transition distance for joint 1 of the PUMA

arm was computed from the 0.19 meter diameter of the bull gear, assuming a 10%

slip coefficient for the gear cut. The externally observable transition distance was S

0.0003 radians. These three measurements of transition distance all lie near the

typical asperity dimension of finished hard metals.

Table 5.2 Transition Distances from Static to Kinetic Friction.

Investigator Transition Interface Characteristics
Distance

E. Rabinowicz [51] 1 to 7 pm Various Metals Sliding on Steel
P.R. Dahl [77] 6.7 pm Industrial Ball Bearing, 6mm Balls
B. Armstrong 1.9 pm Bull Gear of the PUMA Joint 1

5.5 The Stribeck Effect

The Stribeck effect appears at low velocity and gives rise to friction which

decreases with increasing velocity. To observe the Stribeck effect alone, it was

necessary to account for the influence of the Dahl effect in the data. Rather than

attempting to model the Dahl effect accurately, it was removed from the data by

throwing out all data points taken near to a zero crossing in velocity. Welding

occurs at zero velocity and affects the mechanism behavior for some translation

away from the point of welding. When a sufficient distance is traversed in steady

motion, the Dahl effect is no longer a substantial influence. A number of distances

were tried, five shaft encoder ticks (0.0005 radians) was found to be effective. This

11 R!
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filtering step, removing all data points collected within five shaft encoder ticks of a

velocity zero crossing, I call "de-Dahl'ing".

In the final step of processing, the friction measurements were placed into bins

according to velocity. Only those bins containing 30 or more points were retained,

a requirement of sufficient sample size to achieve a good estimate of the mean. The

result of the "de-Dahl'ing" and sample size filters, applied to the data of figure

5.10, is shown in figure 5.12. The separate lines indicate data collected by different

combinations of spring stiffness and torque rate. Binning the data of figure 5.12

according to velocity and computing the mean and deviation give figure 5.13. The

negative dependence of friction upon velocity is evident at a level many times the

uncertainty in the measurements. The 90% confidence interval shown is taken from

the distribution of friction measurements within each bin. The total data set giving

figure 5.13 is 4,000 data points, taken in 9 separate motions involving 5 different

springs, ranging from 770 to 3400 Newtons per meter stiffness, and 3 different

torque rates: 5, 10 and 15 Newton-meters per second. The curves of figure 5.13 are

shown in expanded view in figure 5.14.

The model curve shown in figure 5.13 was created by fitting an exponential

function of velocity squared to the data. The model function is:

F(v) = Fo - Fci(1 - e(V/VC) 2 ) - Fc2(1 - e(t/VC2) 2), (5.3)

minimizing the squared error yields:

F(v) = 10.11 + 4.97v - 1.02(1 - C(,,/O_0061) 2 ) - 0.71(1 - e(V/ '048)2 ) . (5.4)
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Figure 5.12 Data from several Trials Corrected for the Dal Effect.

I believe that the presence of two break points reflects linear sliding occurring at

two different velocities in the drive train.

This fit was done to a data set that merged data from the open-loop, constant-

torque motions, closed loop, constant-velocity motions and the compliant motions.

The values of kinetic friction demonstrated by these experiments were observed to

be different and an adjusting factor of 0.49 N-m was added to the constant velocity

data and 1.94 N-m was added to the compliant motion data. This variability in

the kinetic friction may be due to the separation in time between the experiments.

Drift in the kinetic friction parameter was observed and is discussed in relation to

adaptive control, though it was generally less than 10% or 0.8 N-m. An experimen-

tal bias affecting the compliant motion data is indicated by the large shift in kinetic

friction relative to the constant torque and constant velocity motion data. The

I
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Figure 5.13 Friction as a Function of Velocity During Motions Against a

Compliant Surface.
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Figure 5.14 Friction as a Function of Velocity During Motions Against a
Compliant Surface (Expanded Scale).
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merged friction data set and the model curve are shown in figure 5.15, which spans

the velocity range of joint one.
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Figure 5.15 Friction as a Function of Velocity; Compliant, Constant Velocity and
Constant Torque Motion data Merged to Span Full Motion Range.

The exponential model of equation (5.3) is emperical. A model with an

additional parameter in each exponential break was fit to the data, the additional

parameter allowed the break point to be shifted in velocity:

F(v) Fo - FcI(1 - ((t-VOI)/vc1 )2 ) - Fc 2 (1 - V((-v 2 )/Vc 2 ) 2 ) (5.5)

where X() = {()
, if X <0;
e) if X >0.

... .-. .w .. .
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But this increase in model complexity did not produce a substantial improvement

in the fit. The Fisher statistic for the increased model complexity is F(30, 2) = .63;

a Fisher statistic that is between zero and one indicates an improvement in the

model fit, but an improvement that is less than chance.

The curve of figure 5.13 is an example of a generalized Stribeck curve [Stribeck

02; Rabinowicz 65; Czichos 781. The effect has a rather straightforward tribological

explanation: in a lubricated system, when the surfaces are not in motion the

lubricant may be largely expelled from between the contact surfaces and metal to

metal contact results; this is called boundary lubrication. When the surfaces are in

motion at high velocity, they are fully separated by the lubricant, which remains

between the surfaces because of its viscosity. In this regime, termed full fluid

lubrication, viscous friction is in evidence, as shown in the high velocity portion of

figure 5.15. At middle velocities, the sliding surface is only partially lifted by the

lubricant, and metal to metal contact bears a potion of the load which diminishes

with increasing velocity. This velocity regime is termed mixed lubrication and is

marked by decreasing friction owing to the decreasing load borne by metal to metal

contact. The three stages of the Stribeck effect are shown in figure 5.16.

Break-away and the transition to full fluid lubrication are not simple, single

parameter processes; in addition to material properites and load, the transitions

must depend upon residence time and acceleration. The fact that the data from

9 trials group so tightly in figure 5.12 gives confidence that the measurements

accurately reflect the under lying process over a range of physical configurations.

However, if the experiment were constructed in a different way the measurements

might differ; though the underlying mechanism of the Stribeck effect and structure

of the Stribeck curve would remain unchanged.

- ~ . - - ---...- . 1' -
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Figure 5.16 The Generalized Stribeck Curve. (From [Czichos 78], reprinted with
permission of the publisher).

No predictive model of the Stribeck effect is available; a complicated interdepen-

dence arises between asperity size, lubricant viscosity and contact geometry. The

viscosity of lubricants under pressure may provide the greatest barrier to analysis.

It is now known that some lubricants, particularly metallic soaps (grease), become

very viscous under extreme pressure; so much so that the lubricant itself may

contribute to plastic deformation of the bearing metal surface, confounding analysis

of the interaction. Thus, the functional form of the model, as well as the parameter

values, are based on empirical observations. A. Sornmerfeld, while he held the Chair

of Technical Mechanics in the Technische Hochschule in Aachen, studied the viscous

drag on a journal bearing, solving the Reynolds equation with the assumption of

incompressible flow [Somrerfeld 04]. Sonmerfeld's solution was later generalized

by introduction of the Sommerfeld transformation. Sornmerfeld's solution predicts a
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curve with the same shape as that of the Stribeck curve, and probably provided the

prototype, as Stribeck's own data mapped only the mixed and full fluid lubrication

regimes. It is an interesting twist in the history of science that the "Stribeck

curve" was never drawn by Stribeck, nor was the "Sommerfeld transformation" ever

employed by Sommerfeld; both came along later as the original contributions were

generalized [Dowson 79].

The Stribeck effect has profound implications for the stability of controlled

mechanisms. An instrumentality capable of providing stable control in the region

of mixed lubrication would be quite incredible. The derivative of the friction model

of equation (5.3) is shown in figure 5.17. The derivative of friction with respect to

velocity is proportional to the natural damping of the system: a negative derivative

indicates an unstable system. The low velocity limit of the three control structures

tested - shaft encoder feedback, integrated accelerometer feedback and direct

accelerometer feedback - are indicated in figure 5.17. The degree of instability that

must be compensated for at the lowest point of figure 5.17 is more than ten times as

great as that achieved by direct accelerometer feedback. To allow a mechanism to

operate stably throughout the velocity spectrum would require effective elimination

of the Stribeck effect. But the effect is general to fluid lubricated interfaces, and

may extend to dry lubricated interfaces where the dry lubricant deforms plastically

under prevailing load conditions. In the absence of practical mechanisms free of

the Stribeck effect, a minimum velocity for stable motion is an intrinsic mechanical

characteristic.

o0



60 Chapter 5: Friction as a Function of Velocity Section I: Friction

a)
29--G

9.80
-29

CL rlag
.120

0.-140

9 tale SIfsVectyLo

03

-4 is

a 0 .02 0.04 e.e6 e.ee e.1
* VeLocity (Rad/sec)U-

L±.

Figure 5.17 The Derivative of the Friction Model of Equation 5.3.

In this chapter the relationship between velocity and friction is explored. In

the moderate to high velocity regimes friction is seen to be quite linear with

velocity with no position dependence but with separate kinetic and viscous friction
p

parameters in the positive and negative rotation directions. Low velocity friction is

explored, and two tribological effects are shown to be present and important: the

Dahl effect and the Stribeck effect, both of which bode ill for fine control.
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Chapter 6

Demonstrations of Friction Compensation

To demonstrate the accuracy of the friction model, open-loop moves were

undertaken. For the spatial motions demonstrated in sections 6.1 and 6.2, friction

was predicted using a three component model:

1. Kinetic Friction

2. Viscous Friction;

3. A Table Lookup to Compensate for Position-Dependent Friction.

6.1 Open Loop Motion of One Joint

Figure 6.1 is a plot of the desired and actual robot motion during a 20 second

oscillating motion. This motion was conducted in open loop: there is no feedback

correction. The motion of figure 6.1 is in fact the first reciprocating motion

cu iducted, friction compensation is based on a model developed as described in

chapters 4 and 5; not upon a model identified on the trajectory shown. The

only state-dependent portion of the torque was a position-dependent table lookup

correction. In addition to the table lookup correction, a four parameter friction

model was used to generate the torques for the plotted motion; the parameters are

shown in table 6.1.
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Figure 6.1 Desired and Actual Position during an OPEN-LOOP Motion made
using Parameters Identified on different Trajectories.

Table 6.1 Parameters used for the motions of figures 6.1 and 6.2.

The Motion The Motion 2
of Figure 6.1 of Figure 6.2

Mass; 4.900 5.115 (Kg-M2)
Viscous, positive rotation; 4.938 5.070 (N-m/rad/sec)
Viscous, negative rotation; 3.446 3.772 (N-m/rad/sec)
Kinetic, positive rotation; 8.432 8.121 (N-m)
Kinetic, negative rotation. -8.262 -7.907 (N-m)

The friction parameters used for the motion of figure 6.1 are shown in table

6.1. They are those derived in chapter 5 above, which is to say that they are not

specific to this trajectory. It is generally true that a set of parameters derived from

a specific motion will afford better accuracy on that specific motion; the motion

of figure 6.2 demonstrates this. The motion of figure 6.2 was conducted using

parameters derived from data collected during the motion of figure 6.1. The final
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position error at the end of the motion of figure 6.2 was only "1.02 deg, or 0.14%

of the total motion distance. The motion of figure 6.1 provides, however, a better

indication of the global accuracy of the open-loop friction correction; this motion

shows an accumulated position error of 4.1% - still not bad for open-loop control.
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Figure 6.2 Desired and Actual Position during an OPEN-LOOP Motion made
using Parameters Identified on the same Trajectory.

The total torque applied to bring about the motion of figure 6.2 is shown in

figure 6.3. In figure 6.4 this torque is broken down into the inertial and friction

components. The RMS inertial torque is 3.62 Newton-meters, the RMS friction

torque is 10.72 Newton-meters, nearly 3 times greater. In figure 6.5 the friction

torque is further broken down into the kinetic, viscous and table lookup torques.

0
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Figure 6.3 Total Torque Applied During the Motion of Figure 6.2.
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Figure 6.5 Friction Torque Broken Down into Kinetic, Viscous and Table
Lookup Components.

6.2 Open Loop Motion of Three Joints

To extend the friction model to joints 2 and 3, .the break away experiment of

chapter 4 was carried out to build a position correction table; and the constant

torque gliding experiment, chapter 5.1, was carried out to measure the viscous and

kinetic friction parameters. The positive direction lookup table corrections applied

to joints 2 and 3 are shown in figures 6.6 and 6.7. Roughly 60,000 data samples

were taken to build each table.

Data to measure friction as a function of velocity were collected at four torque

levels for joint 2 and three torque levels for joint 3. At each torque level five

measurements were made, allowing the variance to be estimated. These data are

shown in figures 6.8 and 6.9.
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Figure 6.8. Friction torque as a function of velocity, Joint 2.

Compensation for position dependencies in the-friction data for joints 2 and 3

was not as successful as that for joint 1. Figure 6.10 shows a bang-coast-bang move

of joint 3 comparable to those of figure 4.4. The R.MS velocity error is 0.054 rad/sec

in the motion of figure 6.10, vice 0.008 rad/sec in the motions of joint 1 shown in

figure 4.4. One thing confounding the identification of friction at joints 2 and 3 is

the gravity loading on these joints. During the break away experiment the gravity

load was compensated by a configuration-dependent calculation [Armstrong, Khatib

and Burdick 861 that provided a gravity balancing torque added to the experimental

torque. The RMS velocity error of 0.054 rd/sec corresponds roughly to an RMS

torque error of 0.018 N-m, or 0.14% of the maximum gravity load. The uncertainty 5
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in the gravity compensation is substantially larger than this. I originally believed

that the gravity compensation could be detected in the break-away data with

extraordinary sensitivity, by comparing the positive and negative rotation break-

away data. But other sources of difference between the positive and negative

rotation break away friction upset this measurement of gravity loading. For this

work the gravity compensation was manually tuned to roughly the 0.1 N-m level

by tuning gliding motions for minimum velocity variation: a tedious and imprecise

process.
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Figure 6.10 Velocity Profile Recorded During an Open-Loop Motion of Joint 3
with Position Dependent Correction Applied.

To conduct three joint motions the model becomes substantially more complex

than that required for one joint motion: a more complex inertial model must be

used and gravity compensation is required. Thus the model has three parts:

A. Model of rigid body dynamics, 9 Parameters;

B. Gravity compensation, 4 Parameters;

C. Friction Compensation 12 Parameters + 6 Tables.

The rigid body model used is the simplified model presented in [Armstrong, Khatib

and Burdick 86]. The inertial, Coriolis and centrifugal forces are computed; this is

feasible because the forces are pre-computed and applied open-loop. The lumped

inertial parameters of the model depend upon the simple inertial pn..ameters of each

.~ - -'4- *~%.%%~. ~ ;~;
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link, which are affected by sensors mounted on the arm. A difficult identification was

anticipated, as the added equipment will affect all of the nine inertial parameters.

The identification proved unnecessary; it was sufficient to measure the mass, and

locate the center of mass of each of the added instruments. The additional mass

was added into the simple inertial constants and the nine lumped inertial constants

were recomputed. The required mass and location data are presented in table 6.2.

Table 6.2 Mass and Center of Gravity Data for Items Added to the Arm.

Joint Mass Position Position Position Item Name
(Kg) X axis Y axis Z axis

6 0.471 0 0 0.0762 Force Wrist
2 0.128 -0.089 -0.159 0 Base of Accel Mount
2 0.426 -0.089 -0.190 0 Remainder of Accel Mount
2 0.247 -0.089 -0.225 0 Rotational Accel

6 0.457 0.0 0 0.140 Zebra Invader
6 0.173 0 0 0.200 Force Fingers
3 0.318 -0.083 -0.222 0 Force Finger Box.

3 0.199 -0.083 -0.222 0 Wrist Electronics
3 0.071 -0.089 -0.4064 0 Wrist Cable
6 0.210 0 0 0.127 Shashank Cube
3 0.247 0 0 -0.0584 Rotational Accel on Joint 3

Because software to compute the parameters was available from the investigations

of [Armstrong, Khatib and Burdick 86), this entire effort, from borrowing the postal

scale to using the parameters during motion took less than a morning ! Experience

carefully tuning the diagonal elements of the inertia matrix during single joint

motions of each joint suggests that the pre-computed parameters are accurate to

0.1 N-m 2 , or 2%.

via
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The gravity parameters were tuned manually, as described above, and the

friction parameters were those presented with figures 5.1, 6.8 and 6.9. Taken

together they form a 25 parameter model that was used to produce the open-loop

motions of figure 6.11. The cumulative position error at the end of the three joint,

open-loop motion is less than 10%.

CI

C 3 Jo-n

"4

0 2

C !Joint 1

"]14

' 2 S 3 4

Time (seconds)

Figure 6.11 Position Profile Recorded During an Open-Loop Motion of Joints 1,
2 and 3.
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6.3 Friction Compensated Force Control

To push the fidelity of force control to a level far below the magnitude of the

static friction of the mechanism an impulsive control system was implemented.

Friction at very low velocities works against good control in three ways:

1. When the mechanism is stuck, the force across the friction junction is
indeterminate;

2. Because of the Dahl effect, break away is not simple;

3. Because of the Stribeck effect, motion at low velocities is unstable.

When the velocity is across a rubbing junction is non-zero, the friction force

takes on a value that is determined by the position, velocity and possibly other

factors of the mechanism. But when the velocity is zero, the friction force is

whatever is required to prevent motion. The implication for control is that

knowledge of the applied forces, especially during the transition from stuck to

unstuck, may be unavailable; and this will confound efforts to predict the behavior.

The transition from static to kinetic friction is a complex of displacement and

velocity-dependent processes. These processes are not thoroughly studied in this

report, though conclusive evidence for their presence on an externally observable

scale exists in the data of section 5.4. From the viewpoint of this report the Dahl

effect is simply a source of uncertainty, a hidden state. It should be pointed out

that in other work, [Walrath 841, a parameter of a Dahl-like model was adaptively

identified, enabling the researcher to predictively compensate for friction during

a rapid transition through zero velocity. For this report the implication of the

Dahl effect is that the exact force required to achieve motion from a stuck point is

unknown.

1PR
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The manipulation of delicate objects in hara contact often occurs at low

velocities; in many practical situations the velocities will lie in the range of the

Stribeck effect. For the mechanism studied, no feedback control is possible which

would stabilize the system in the regime of mixed lubrication, from 0.002 to 0.015

radians per second. This implies that any control that must cross this regime must

do so unstably, that is bang through.

The motivation and design of the impulsive controller are heuristic. The

motivation is based on the arguments above: uncertainty exists in the level of

force required to achieve motion, and steady motion at extremely low velocities

is unachievable. The impulsive controller operates with a lookup table of torque

sequences. Associated with each torque sequence is a force step, measured prior to

the exercise of control. The desired force step is determined calculating the force

error - the desired force less the measured force - and scaling by a gain. The stored

torque sequence providing the maximal force step smaller than the desired step is

selected and played out. Because the impulsive action excites the flexibilities of

the mechanism, the force measurements are low pass filtered and a space of time is

allowed to pass before the next control action is taken. A block diagram is shown in

figure 6.12. A feed-forward term is also included; this is important when the desired

force is not small. The impulse table employed by the controller is shown in table

6.3.

The impulsive controller was used to insert a piece of wire wrap wire, #30

copper, 0.25 mm diameter, into a hole in a plate of glass, 0.75 mm diameter.

The insertion posses a substantial control challenge because the buckling strength

of the wire is only 0.2 Newtons, one 6 0th of the 12 Newton static friction of the

mechanism. The configuration of the apparatus is shown in figure 6.13. Joints 2
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Figure 6.12 A Block Diagram of the Impulsive Controller.

Table 6.3 Impulse Table for the Impulsive Controller.

Force Torques in Wait First Second Third
Step Sequence Time Torque Torque Torque

(Newtons) (sec) (N-m) (N-m) (N-m)

0.000 1 0.005 0
0.020 1 0.12 13
0.035 2 0.12 13 10
0.055 2 0.12 13 13
0.076 2 0.12 14 14
0.096 3 0.12 15 !5 2

and 3 of the PUMA were position controlled by the standard industrial controller;

they were used to move the wire along the 'V' slot between the glass slides. Joint

1 was aligned with the force control direction and was controlled by the impulsive

controller.
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Figure 6.13 Experimental Setup for the Wire Wrap Insertion.

The measured force, control action and measured position during a successful

insertion are shown in figures 6.14, 6.15 and 6.16. The control action plotted in

figure 6.15 is the force step corresponding to the impulse selected by the controller.

With a new wire, the insertion was successful about half of the time. The surface

being tracked was canted with respect to the direction of motion, so that travel in

the force controlled direction was required to maintain contact, as indicated by the

change in position between t = 0 and t = 5 seconds. The wire was slanted into the

direction of motion, and twice caught small features on the glass surface. These two

points are indicated by the rise of the force error to positive values, at these points

the control system reverses its action. At t = 13 seconds insertion occurs and the

control system drives the wire through the hole.

The commanded force during this motion was 0.1 Newtons, one 1 201h of the

static friction; the RMS contact force error is 0.038 Newtons, one 3 161h of the static

U 111111
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friction. The RMS control action is 2.76 Newtons, 73 times greater than the RMS

applied force error.

Desired Contact Force
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Figure 6.14 Measured Force During Wire Wrap Wire Insertion.

To account for the variation in friction with position, table lookup friction

compensation was applied during impulsive control. For this application, a table

low pass filtered to 500 cycles per radian was used. The contribution of the table

lookup compensator to the motion of figures 6.14, 6.15 and 6.16 is shown in figure

a,1

6.17. Compensation for the position dependence is especially important for the
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smallest force steps: 13; 13, 10; and 13, 13 in table 6.2. A diminishment in these

impulses of 1 N-m corresponds to a reduction in the output of a factor of 3; an

increase of I N-m corresponds to an overshoot of a factor of 2. The regions of rapid

reversal near six and eleven seconds correspond to reversals in control action and

arm direction evident in figures 6.15 and 6.16. A reversal in arm direction causes a

switch from the positive direction table to the negative direction table.
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Figure 6.17 Table Lookup Action during the Force-Controlled Insertion.

In this chapter three demonstrations of friction-compensated motion are pre-

sented. The demonstration of open-loop single joint motion shows that the friction

model can be made quite accurate. The demonstration of three joint motion shows

I
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that the modeling techniques developed for joint one of the PUMA mechanism

extend to joints two and three, .ind points the way toward maximum performance

motion of the mechanism. It should be noted that during the motions presented,

the inertial forces at no time exceed the static friction; that is to say that if

the same motions had been undertaken with torques pre-computed using only an

inertial model, no motion whatever would have occured. A demonstration of force

control is also presented, using a special 'impulsive' controller. The control law of

this controller specifies very hard, quick actions to overcome friction. This control

law is applicable only near zero velocity and suffers several limitations; but in its

special application - high fidelity control of forces during low speed motions of a

mechanism with substantial static, Dahi and Stribeck friction - it is at least an

order of magnitude better than the best previously demonstrated.

- !-



Chapter 7

Recommendations to the Engineer

"Therefore always when you wish to know the quantity of the
force that is required in order to drag the same weight over beds
of different slope, you have to make the experiment and ascertain
what amount of force is required to move the weight along a level
road, that is to ascertain the nature of its friction."

Leonardo da Vinci (1452-1519),
The Notebooks, F 11106 r

Friction is a performance limiting factor for many manipulation mechanisms. S

For this reason it will be of interest to the engineer designing mechanisms or control

for manipulation. The use to which a friction model is to be put will determine the

demands upon its completeness and accuracy. The broad categories of application

of friction models are:

A. To determine the performance limits of an existing mechanism;

B. To design control for a mechanism with friction;

C. To design mechanisms for high performance in the presence of friction.

S

The three categories of application are ordered from least demanding to most; with

the third representing largely uncharted waters.

80
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This work points to a number of properties of friction which should be

measured and suggests experimental procedures for obtaining the measurements.

The properties to be measured are:

1. Repeatability of the Friction Forces;

2. Magnitude of the Kinetic Friction;

3. Magnitude of the Static Friction ;

4. Critical Velocity of the Stribeck Effect;

5. Linearity of Friction as function of velocity and the Magnitude of the
Viscous Friction;

6. Magnitude and Character of Position Dependence in the Static and Kinetic
Friction.

7.1 Recommendations on Experimental Technique

With a force-actuated mechanism, it is straightforward to measure properties

2, d and 5. A stiff velocity servo should be implemented, as in section 5.2, and

constant velocity motions conducted at a range of speeds; the average required

torque should be measured. Several samples should be collected with each starting

point and velocity in order to estimate the repeatability; such issues as warm up

and independence from load should be examined. By reducing the commanded

speed in repeated trials of constant velocity motion, the speed at which stick-slip

motion begins can be observed. This velocity is not Vc of equation (5.3), but the

experiment is straight forward, and will provide an estimate useful in establishing

the limits to performance.
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All of the analytic work studying limit cycles induced by static friction assumes

a measurement of the difference between the static and kinetic friction. This

difference is the magnitude of the Stribeck effect, and will be a consequence of the

material properties of the drive train components and the lubricant. Because the

static friction can vary with position at very high spatial frequency, it is difficult to

measure. The break away experiment of section 4 was highly successful, and can

be implemented on any apparatus with force-commanded actuaticn and position

sensing. The key is sampling at adequate spatial frequency, and binning according

to position. If the sampling is not sufficiently dense, problems of undersampling

and aliasing arise. If the data are examined according to the natural distribution

rather than according to evenly-spaced bins, the effects of non-uniform friction will

bias the estimate of mean static friction.

Position dependence is introduced into the static friction of electric mechanisms

with gear transmissions by the non-uniformity of the motor, especially brush type

motors, and '.y the cyclic interaction of gear teeth. The latter effect was dominant
in the mechanism studied here. A mechanism that employed a uniform actuator

and transmission, such as pneumatic actuation through a four bar linkage, might

not exhibit important spatial dependency. DC servo motors and high ratio gear

drives can, however, exhibit a 30% change in static friction over a distance small

in relation to the smallest feature of the actuator or drive train. Sampling with a

spatial frequency 20 times higher than the finest gear pitch or the expected cogging

in the motor is recommended.

The break away experiment will provide measures of the static friction and

position dependence in the friction, items 3 and 6 above. This completes the list

of basic measurements of friction. The performance limits imposed by the Stribeck

- t~p. - P P
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effect are only weakly mapp dout by this experimental procedure: the minimum

stable velocity is measured. Knowledge of the controller bandwidth might be used in

conjunction with this minimum velocity to estimate the minimum position or force

step that can be taken. Often in practical controllers this estimate is embedded in

the form of a deadband in integral control.

7.2 Recommendations on Control

From the perspective of the control engineer friction is divided into two regimes:

near zero velocity and away from zero velocity. Away from zero velocity the problem

is a straightforward one: the friction should be modeled and the model used in

feedback design or for feed-forward compensation. The experience of this research

shows friction in the moderate to high velocity regime to be well behaved and

simple to model. There is some impetus to neglect friction in this velocity regime

because it is benign: it is never destabilizing. This is nonsense, the damping should

be understood and under the control of the controller. For control system designs

that operate in coordinate spaces other than joint space, such as operational space

control or Salisbury stiffness control, it is even more important that friction be

compensated: these systems are designed to provide independent motion in the

output coordinates rather than the joint coordinates; the unmodeled friction in

joint coordinates will translate to an unmodeled coupling of motions in the output

coordinates.

Control of mechanisms near zero velocity is another thing altogether. Two

factors conspire to challenge the use of a friction model directly in control:

uncertainty introduced by the Dahl effect, and the destabilizing character of the

Stribeck effect. The Dahl effect has not been thoroughly studied in this effort,

I L I



84 Chapter 7: Recommendations to the Engineer Section I: Friction

casual examination of its repeatable behavior in trials such as that shown in figure

5.4 suggests that the effect could be captured in a predictive model. The challenge

to predicting Dahl friction will arise in ascertaining the state to the required

accuracy. The break-away transitions studied here have been carefully constructed

for repeatability. In an active control situation, such factors as time at zero velocity

and acceleration near zero velocity will by important. The challenge of estimating

the state near zero velocity is made greater by the fact that the system is unstable.

The instability introduced by the Stribeck effect will all but eliminate hope of

accurately estimating the velocity in the traditional fashion. Direct and accurate

velocity sensing is strongly indicated.

The impulsive control demonstrated relies on the system coming to rest between

impulsive actions, thus skirting the difficult challenge of accurately estimating

velocity. The controller takes advantage of information other than that directly

available from the sensors: knowledge that the mechanism will be stuck in the

friction at the time a control action is taken. This special requirement limits the

velocity and bandwidth of the controller, but within these limitations the controller

is shown to perform well. I believe that the challenge of determining the state with

sufficient accuracy to effectively predict friction limits the feasibility of using control

to compensate for low velocity, non-linear friction.

Joint torque sensing is being pursued as a way to directly sense the friction

and compensate for it by feedback control [Pfeffer, Khatib and Hake 86]. This

approach requires torque or force sensing devices at the output of the transmission

or drive train of each link of a mechanism. Accurate joint torque sensing and high

bandwidth feedback control will compensate for some of the effect of non-linear

friction at zero and low velocities.
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7.3 Recommendations on Design

The principal contribution of this work toward mechanism design is to bring to

light the Stribeck effect and show it to be a repeatable, tractable and important

factor for control and ultimate mechanism performance. That is to say to show that

attention to performance must begin with the mechanical design. The best solution

to many difficult problems is to avoid them, which, in this case, translates to the

design of mechanisms that achieve motion without rubbing. The IBM research

micro manipulator is an example of such a device: the three axis micro manipulator

is comprised of flexible beams set at right angles and actuated electro-magnetically.

Other design alternatives, such as forced lubrication homogeneous drive technology,

and more compliant mechanisms may also offer improved performance.



Chapter 8

Conclusions

This work has shown that friction is large, that it is quite repeatable and that,

during motion, it can be effectively predicted and compensated. In this particular

mechanism, a dc servo motor driven rotary joint with grease lubricated gears and

ball bearings, it has been found that:

" Motion friction depends upon position and is about 99% repeatable;

" Break away friction, when measured in a controlled way, is about 97%
repeatable;

* Above a minimum velocity, the friction is very linear with velocity;

" The Stribeck effect plays a destabilizing role below a minimum velocity;

* The Dahl Effect plays an important role in the transition from rest to
motion

" The friction is different in the positive and negative rotation directions.

Demonstrations of open-loop control and high fidelity force control show the friction

modeling to be quite accurate.

Though the direct results of this work apply only to a particular mechanism,

our PUMA 560, the methodology and general findings are more widely applicable.

86
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The measurement and modeling of the Stribeck effect, never previously discussed

in the controls literature, points the way toward the development of analytic and

experimental techniques to study and measure this effect and its impact on control.

And the unavailability of friction models has been a hindrance to the effective

off-line tuning of control systems, the implementation of optimal control strategies

and the accurate simulation of motion. The results presented should prove useful in

these applications.

The challenge of the introduction, that is the challenge of force control in hard

contact, is not yet met however. As discussed below in the appendix, neither

impulsive control nor dither show considerable advantage over simple feedback

during force control in hard contact. But study of friction may yet point the way:

all of the control schemes tested in force control - linear feedback, impulsive control

and control with dither - either neglect or attempt to jump past the break-away

and low-velocity friction effects. The key, in hard contact, may be to govern these

low velocity effects, especially the Dahl effect, with control that correctly models

the forces of small motions. 0-
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Appendix A

Small Studies

In this appendix the results of a number of small studies are reported. These

small studies investigate friction properties that are not considered in the main

thrust of the research but may none-the-less be of interest to some readers. The

studies reported here are preliminary examinations made quickly with apparatus

that was available.

A.1 Friction as a Function of Motor Angle

The break-away data of figure 4.2 show a position dependence in the static

friction. Whether the observed structure in the static friction is connected with

motor position can be tested by grouping the break-away data according to motor

angle, as shown in figure A.1. To make figure A.1 the break-away data from a

full rotation of joint 1, 52 motor revolutions, have been regrouped according to the

motor angle. That is to say that the value plotted at each point in figure A. 1 is

the average of data collected at 52 different arm positions, all corresponding to one

motor position. If the break-away friction were uncorrelated with motor angle, any

structure in figure A.1 would be coincidental.

88
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Figure A.1 Break-Away Torque as a Function of Motor Rotation Angle, merged
data from 52 Motor Revolutions.

Figure A.1 shows twelve peaks in the friction per rotation of the motor. The

pinion gear on the motor shaft is twelve pitch, suggesting that the periodic friction

in figure A.1 occurs at one cycle per gear tooth.

The drive train of joint 1 of the PUMA 560 robot consists of two intermediate

gears acting in parallel, the motor pinion gear and a large bull gear, as shown in

figure A.2. If the friction plotted in figure A.1 is taken to be the friction in the

motor and the motor/intermediate gear interface, it can be subtracted from the

total friction to yield the residual friction. This was done and the residual friction

was grouped according to intermediate gear rotation angle. The result, friction as a

function of intermediate gear angle, is shown in figure A.3.

The friction signal of figure A.3 shows a component at one cycle per intermediate

gear revolution and another at 48 cycles per gear revolution. The one cycle
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Intermediate Gear Intermediate Gear

Motor Pinion Gear

Figure A.2 Schematic Illustration of the arrangement of gears in joint 1 of the
PUMA 560 robot.

per revolution component is due to eccentricity of the intermediate gear. The

intermediate gear is 48 pitch at the motor pinion/intermediate gear interface,

accounting for the 48 cycle per revolution signal. The mean value of static friction

in figure A.3 has been arbitrarily assigned to 2 Newton-meters: the experiment

can not distinguish the DC value of static friction associated with each rubbing

interface.

The 20% variation in friction (motion friction as well as static, see figure 4.1)

occuring with the passage of each motor tooth is a very substantial disturbance

to control. Consider that in a standard controller the integral control term will

attempt to track the varying friction of figure A.1. The friction disturbance spans

the spatial frequency spectrum from one cycle per arm revolution to hundreds of

cycles per radian. This disturbance is a strong impetus toward homogeneous drive

mechanisms, such as that proposed and examined in [Townsend 881.
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Figure A.3 Break-Away Torque as a Function of Intermediate Gear Rotation
Angle, merged data from 13 Gear Revolutions.

A.2 Joint 2 Motor Alone and Joint 2 Link Alone

During a maintenance operation the motor of joint 2 was detached from link 2.

This opportunity was used to measure the friction in motor 2 alone and in link 2

alone. The break-away experiment was used to measure the static motor friction,

as described in chapter 4.1. With the rotational accelerometer attached, link 2 was

lifted and allowed to swing under the influence of gravity. The velocity and position

were estimated by integrating the acceleration signal and the friction parameters

were estimated as described in chapter 5.1.

The break-away friction of the motor alone is compared to the break-away

friction of the motor and joint in figure A.4. The mean static friction of the motor

alone is 8.0 N-m (reflected to the joint) compared with a mean static friction of 12.7
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N-m for the motor with drive train and link. The dominant spatial frequency of the

motor with link curve in figure A.4 is 65 cydes per revolution of the motor. This

frequency does not correspond to any known drive train feature.

EaE G Stotic Friction. Motor with Lint

14

CS
012
-

'4

0 O4 --Stotic Friction, motor Allone -

4.,(0 2

0 1 2 3 4 IS 6
Joint 2 Motor AngLe (Radians)

Figure A.4 Static Friction as a Function of Motor 2 Angle. Static Friction
Measured with Link 2 Attached and Motor 2 Alone.

While link 2 was swinging freely, the link bearings and the intermediate gear

were turning. The acceleration profile recorded during the swinging motion is shown

in figure A.5; note the jumps in acceleration that occur when the velocity reverses.

The kinetic and viscous friction parameters of the link alone are presented in figure

A.6. The link bearings and bull gear/intermediate gear interface contribute 5% of

the total kinetic and viscous friction.

I
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Figure A.5 Acceleration and Velocity Profile of Link 2 Swinging under the
Influence of Gravity.
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Figure A.6 Comparison of the Kinetic and Viscous Friction Parameters for the
Assembled Joint 2 and for Link 2 without the Motor.
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A.3 Trials with Dither

Dither is a high frequency signal added to the control signal; it is used to

reduce the effect of static friction. Dither is commonly used in linear control

of hydraulic actuators, where static friction can be very substantial. Dither was

applied during force control in compliant contact and provided roughly a factor of

three improvement in the fidelity of force control.

The apparatus used to test dither incorporated linear position + derivative

control of joint 1. The finger force sensors were uaed to measure contact force. A

single pole lag compensator was used, and a proportional gain of 8 Newton-meters

of per Newton of force error. Integrated acceleration was used to generate a rate

signal which multiplied a velocity gain of -30 Newton-meters per radian/second.

The controller sampled 200 times per second. The control parameters were taken

from the COSMOS control system [Khatib and Burdick 861 and correspond to

critical damping with an environment stiffness of 2000 Newton-meters per radian.

A stiff spring was used to give an environmental stiffness of 2,800 N-in per rad. The

apparatus was configured as shown in figure 5.3.

In each trial the robot arm was commanded to track a triangular desired force

command. Initial Contact occured under active force control and was stable. The

commanded and actual force from a trail with linear control and 4 Newton-meters

of dither is shown in figure A.7. As seen in the figure, the actual force follows the

desired force with an offset that is dependent on the derivative of desired force

The force error times the proportional gain is roughly the level of static friction,

ill! 11,1 1 1 , l I : ll; I l '
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Figure A.7 Desired and Actual Force During Active Force Control

which averages 9.4 Newton-meters. Note that the use of integral control is limited

in situations with non-linear fiction because of the tendency to induce limit cycling.

Two Newton-meter dither was applied at a range of frequencies, the RMS force

error at each frequency is shown in figure A.8. Witif a controller sample rate of 200

Hz, the maximum - and most effective - dither frequency is 100 Hz* Dither was next

applied at 100 Hz and a range of amplitudes. The efficacy of dither at each of the

amplitudes tried is shown in figure A.9.

Figure A.9 shows dither to be quite effective, even at amplitudes substantially

greater than the static friction of the mechanism. The motor currents applied to

achieve force control with 12 N-in of dither at 100 Hz are shown in figure A.10. The

robot sang audibly with dither of 12 N-in or more. The fidelity of force control with

dither and the non-linear impulsive control of section 6.3 are compared in figure

A.11. At the higher force rate, dither and the impulsive control give comparable

NM. ,
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performance. In a second trial, the desired force was scaled down by an order

of magnitude. Here the impulsive controller held the RMS force error to values

reduced by a factor of two relative to dither.
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Figure A.10 Applied Motor Current during Force Control with 12 N-m of Dither
at 100 Hz.

Neither dither nor the impulsive controller provided any improvement in force

control fidelity when applied during hard contact. The frequency of the first bending

mode goes from 20 rad/sec to 50 rad/sec when going from the spring contact of the

trials here to hard contact. It is apparent from the success of applying very large

dither that the low pass filter affect of the mechanism and environment compliance

is important. Which leaves unsolved the challenge of the introduction: to control

hard contact in mechanisms with static friction.
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Figure A.11 Comparison of the RMS Force Error during Force Control Trials
with Dither and the Impulsive Controller.

A.4 Friction as a Function of Load

With the gliding experiment described in chapter 5.1, friction was measured in

joint one under three different load conditions. The results are presented in table

A.1. The applied torque was fourteen Newton-meters, table lookup compensation

was used and the mean gliding velocity was measured five times under each load

condition. The load torque presented is the torsional load on joint 1 due to gravity,

it acts around an axis orthogonal to the direction of rotation, and thus does not

effect the rotation torque directly: the load is borne by the ball bearings. The

equivalent additional friction is a computed quantity equal to the amount of torque

required to cause the measured change in velocity given the joint viscous friction of

4.94 N-m per rad/sec.

Orthogonal loading gives a small but preceptible effect. The load of 4 Kg at
full arm extension is nearly twice the manufacturer's specified maximum carrying
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Table A.1 Measurements of Glide Velocity at Three Arm Loads.

Load Condition Load Torque Glide Equivalent
Velocity Additional Friction

(N-m) (rad/sec) (N-m)

Arm Upright 2.3 1.029
Arm Extended 61 1.014 0.003
Arm Extended, 4 Kg Load 92 0.989 0.200

capacity of five pounds and results in an increase of 1.4% in the measured friction.

We may conclude that bearing load is a minor contribution to friction.

A.5 Creep

In the study of materials, creep is the slow deformation of a material under a

load too small to cause rapid failure. Ordinary glass, being a fluid, will creep under

its own weight - at a rate of milli-meters per century. In control, the phenomenon

of creep is of theoretical interest because it determines whether or not the friction

force is discontinuous as velocity goes through zero.- A discontinuous friction force

may violate the Lipschitz condition, which is a prerequisite for several important

results in control theory, such as the small gain theorem.

The arm was allowed to come to rest and torque was applied to joint 1 in

gradually increasing levels up to 8.0 N-m. The break-away data indicated that at

0.0022 radians, the position of the arm, break-away should occur at 9.1 N-m. As

the torque was applied windup was observed. Over several trials, the mean windup

was 0.0013 radian during the transition from 0 to 8.0 N-rn of torque. From 8.0 N-m,

the torque was increased in 0.1 N-m steps, one step per hour. The motor shaft

* X '1I 11 11 11'111 12 1 1
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encoder was used to detect motion; its resolution is 9964 counts per radian of arm

motion. The results are presented in table A.2.

Table A.2 Raw Data Collected during 29 hours of Creep Investigation.

Torque Motion Remarks
(N-r) (radians)

8.0 0 Torque Applied for 18 hours, 12 minutes.
8.1 0
8.2 0
8.3 0
8.4 0
8.5 0.0001 Motion occurred 30 minutes into the 1 hour trial.
8.6 0
8.7 0
8.8 1.875 Motion at moderate velocity to end of range,

i.e. full break-away. Motion began 1 minute into trial.

One shaft encoder count was recorded prior to full break-away: that observed

during the hour at 8.5 N-m of torque. Windup was expected, but the occurrence

of the count after 30 minutes of torque application suggests creep as the motion

process. The absence of motion during the hours at 8.6 and 8.7 N-m shows the

creep rate to be less than 1.1 * I0- s radians per second with the applied torque

greater than 97% of the break-away torque. The absence of motion for 18 hours at

8.0 N-m shows the creep rate to be less than 1.5 * 10- 9 radians per second with an

applied torque equal to 90% of the break-away torque. These results indicate that

creep is microscopically small. A stability theory that requires a bounded derivative

of friction with respect to velocity is not practically supported by these data.

The effect of rapping was investigated briefly. With an applied torque of 8.2

N-m and the same initial position as above, the base of the robot was rapped lightly

with a 1 oz. brass mallet. The strokes were applied in a way that would induce

11111 Jill W I 
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vibration in the drive train without directly applying torque. The rapping induced

a steady motion of I shaft encoder count (0.0001 rad.) for each 10 raps. After 60 I

raps full break-away occurred and .2447 radians of motion. Note that the applied

8.2 N-rn is substantially less torque than the expected 9.1 N-m break-away torque.

The new stuck position corresponded to a location of high friction. Steady rapping

apparently induces creep like behavior. Local vibration sources, such as equipment

fans, may have contributed to the motion observed at 8.5 N-m of applied torque.

A.6 Effects that were not Observed

That which is not observed may be as important as that which is. In this section

a few phenomena are discussed that were expected but did not make themselves

apparent. The first of these is torque dependent friction. Because the normal force

across some rubbing interfaces, notably the individual gear teeth, is affected by the

applied torque, it was expected that a friction component proportional to motor

torque would be in evidence. Such a friction component was long sought but never

observed, though friction of this type has been identified in the Stanford/JPL three

finger hand [Fearing 87].

Magnetic Cogging is also observed in the Stanford/JPL hand, and was sought

in the PUMA 560 experiments. But it was not observed. The experiment most

sensitive to magnetic cogging is the measurement of static friction as a function of

motor angle, shown in figure A.4. The spatial fourier transform of this data, shown

in figure A.12, shows a prominent feature at 31.25 cycles per motor revolution. The

motor manufacturer (Magnetic Technologies) specifies a magnetic ripple at 25 cycles

per revolution with a magnitude not greater than 4% of the applied torque. The

feature at 31.25 cycles per revolution has a peak magnitude of 0.26 N-m per vrH-z, I
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and a square root power between the half maxima equivalent to a torque signal of

0.34 N-m. The magnitude of 0.34 N-m is 4.4% of the average torque of 8.0 N-m

applied during the break-away experiment, putting the measurement in the range

of the 5% upper bound set by the manufacturer. But the shift in frequency from

the expected 25 cycles per revolution to 31.25 is unaccounted for. The fractional

value for cycles per revolution may be an artifact of the use of the discrete fourier

transform.
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Figure A.12 Spatial Fourier Transform of the Static Friction of the Joint 2 Motor
while Disconnected from Link 2.

I



Bibliography

Annotated Bibliography

This annotated bibliography is provided in response to a lack of communication

between the specialties concerned with friction and across the decades over which

friction work has been done. The need for greater communication is shown

by the complete absence of any reference to Bowden and Tabor in the controls

literature and the absence of reference to the describing function work of the

fifties by roboticists doing similar work today. The author's catagorization of each

work is shown in italics at the upper right; an asterick indicates the author's

recommendation.

Machine Design; Tribolog,: Theoretical, Experimental
Biel, C. 1920.

"Die Reibung in Gleitlagern bie Zusatz von Volto6l zu Mineral51 und bie
Verinderung der Unlaufzahl und der Temperatur," Zeitschrift des Vereines Seut-
scher Ingenieure 64(1920)449:83.

Biel was the first to point out that the type of friction curve measured by
Stribeck, [02], and described theoretically by Sommerfeld, [04], is likely to describe
the general behavior of lubricated surfaces (see chapter 5.5). The work includes
experimental study of friction for several bearings as a function of lubricant
and temperature, but is most important for its contribution to popularizing the
generalized Stribeck curve.
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Tribology: Theoretical, Experimental **

Bowden, F.P. and Tabor, D. 1956.
Friction and Lubrication, New York: John Wiley and Sons Co.

Tribology: Theoretical, Experimental **

Bowden, F.P. and Tabor, D. 1982.
Friction, Malabar: Krieger Pub. Co.

These two short books, 150 and 170 pages respectively, are the principia of
tribology, the study of rubbing. They are not the same, the former is much more
technical and is concerned with the details of friction mechanisms, models and
experiments. It provides a excellent view of the state of understanding of tribology
circa 1956 and is universally cited in the friction literature. The latter is more
discursive, little direct experimental data is presented, and interesting quotations
are used to irLroduce each chapter. The books should probably be read latter then
former. For any student of friction these books are required reading.

Adaptive Control: Theoretical, Experimental
Canudas, C., Astrom, K.J. and Braun, K. 1986 (April 7-10).

"Adaptive Friction Compensation in DC Motor Drives," Proc. of the 1986 Inter.
Conf. on Robotics and Automation, San Fransisco: IEEE.

Canudas, Astrom and Braun provide a consise description of a system which
adaptively identifies kinetic and viscous friction parameters. A brief theoretical
discussion substantiates the algorithm employed. The careful experimental work
and results are described. Though reference is made to several prior experiments in
adaptive friction compensation, the relationship of this work to other works is not
developed.

Tribology: Survey
Czichos, H. 1978.

Tribology, New York: Elsevier Scientific Pub. Co.

Czichos provides an excellent survey of the field of tribology. The book is very
dense: Czichos is not shy about assuming knowledge of chemistry and physics on
the parts of his reader. The book can be used as a starting point for many detailed
investigations of friction; the references are very complete and liberally scattered
throughout the discussion. There are over five hundred references.
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Control: Simulation, Theoretical, Experimental *
Dahl, P.R. 1968 (May).

"A Solid Friction Model," TOR-158(3107-18), The Aerospace Corporation, El
Segundo, California.

Control: Theoretical, Simulation
Dahl, P.R. 1976 (December).

"Solid Friction Damping of Mechanical Vibrations," AIAA Journal, 14(12)1675:82.

Control: Theoretical, Experimental
Dahl, P.R. 1977.

"Measurement of Solid Friction Parameters of Ball Bearings," Proc. of 6th Annual
Symp on Incremental Modtion , Control Systems and Devices, U. of Illinois.

Dahi is important for bringing experimental data to the study of control of
mechanisms with friction. The Dahl model (see chapter 5.4) treats the transition
from static to kinetic friction as a function of distance. It is comparable in this way
to [Rabinowicz 51]. Dahl cites [Rabinowizc 65], but does not make any use of the
reference, rather depending entirely on experimental data acquired by H. Shibata at
the Aerospace Corp. The technical report [Dahl 68, 24 pages] provides the clearest
exposition of the model and its justification. In [Dahl 76] the model is applied to
flexible structures, and in [Dahl 77] additional experimental work with ball bearings
is discussed.

The Dahl model has been used in the work of a number of researchers toward
control of mechanisms with friction and was found to be important in the mechanism
studied here.

Tribology: Historical Perspective
Dowson, D. 1979.

"History of Tribology," New York: Longman.

History of Tribology (660 pages) starts with archaeological evidence for the use
of bearings and lubrication in ancient times, and proceeds to a detailed account
of modern tribology. The book may appeal to two separate audiences, or to two
separate faculties in the same reader. The historical accounts are quite descriptive
and present a fascinating chapter in the history of technology. As the subject
approaches current research, Dowson changes hat from that of narrator to that of
scientist, and the work becomes substantially more technical. The citations are
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good, and for cases when chronology provides an important research tool, History
of Tribology will be a useful source of pointers into the literature of tribology.

Adaptive Control: Experimental
Gilbert, J.W. and Winston, G.C. 1974.

"Adaptive Compensation for an Optical Tracking Telescope," Automatica vol 10,
pp. 125:31.

Gilbert and Winston demonstrate a model reference adaptive control scheme
that includes a coulomb friction parameter. The implementation, which is discussed
at length, was done with an analog computer. Non-linear circuit components were
used to compute the coulomb friciton signals. A factor of 6 improvement in tracking
performance is shown.

Robotics: Simulation
Gogoussis, A. and Donath, M. 1987 (March 31 - April 3).

"Coulomb Friction Joint and Drive Effects in Robot Mechanisms," Proc. 1987
Inter. Conf. of Robotics and Automation, Raliegh: IEEE, pp. 883:9.

Gogoussis and Donath are concerned principally with the simulation of motions
of mechanisms with non-linear friction. They discuss a friction model which includes
negative viscous friction at low velocities, which they modify around zero velocity
to make it suitible for simulation. Oscillations introduced by the negative viscous
friction are discussed, as are a number of design issues that rise from consideration
of friction. Simulation is shown to be possible by incorporating friction forces
into the joint constraining forces computed during the recursive Newton-Euler
calculation of dynamics.

Tribology: Thworetical, Experimental *

Rabinowicz, E. 1951.
"The Nature of the Static and Kinetic Coefficients of Friction," Journal of Applied
Physics, 22(11)1373:79.

-I
I



Section I: Friction Annotated Bibliography 107

Tribology: Theoretical, Experimental *

Rabinowicz, E. 1958.
"The Intrinsic Variables affecting the Stick-Slip Process," Proc. Physical Society
of London, vol 71, pp. 668:75.

In "The Nature of the Static and Kinetic Coefficients of Friction" Rabinowicz

studies the transition from static to kinetic friction. His experiment is simplicity
itself, a block on an inclined plane is struck by a marble. The release height of
the marble, declination of the plane and travel of the block are related to basic
phenomena of break away. Several materials and lubricants are studied. The
integral of the friction curve is explored by increasing the impulse delivered by the

marble and recording the increase in traveled distance. "The Intrinsic Variables
affecting the Stick-Slip Process" develops a related thought. By studying the
curves drawn by slider-surface contact during stick-slip motion, Rabinowicz is able
to determine the acceleration of the slider, which is born by a flexible mount.
Asymetry between the acceleration and deceleration is used to support a friction
model incorporating a characteristic distance. Rabinowicz does not seem aware of
Stribeck, the Stribeck effect might also be used to account for the data.

Tribology: Experimental
Rabinowicz, E. 1956.

"Autocorrelation Analysis of the Sliding Process," Journal of Applied Physics,
27(2)131:5.

By studying the autocorrelation of friction measured during sliding Rabinowicz
explores the size and properties of junctions formed between the sliding surfaces.
The character of the interface junctions is important for the Dahl effect, and thus
important for control.

Tribology: Descriptive
Rabinowicz, E. 1956 (May).

"Stick and Slip", Scientific American, 194(5)109:17.

Rabinowicz is credited with coining the phrase stick-slip. This paper surveys
historical and contemporary knowledge of the phenomenon and its role in mechanical
motion as well as every day affairs.
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Tribology: Theoretical, Experimental
Rabinowicz, E. 1965

Friction and Wear of Materials New York: John Wiley and Sons.

This book is [Bowden and Tabor 56] brought up to date. Coverage of basic
friction and wear processes and the affects of lubrication is excellent. The book is
somewhat more detailed than [Bowden and Tabor 56], and deserves to be brought
out of the remote annex of the library.

Tribology: Experimental
Stribeck, R. 1902.

"Die Wesentlichn Eigenschaften der Gleit- und Rollenlager - The Key Qualities
of Sliding and Roller Bearings," Zeitschrift des Vereines Seutscher Ingenieure
46(1902)1342:48, 1432:37 and 1463.

Stribeck does notably careful measurements of bearing friction across a range
of bearing designs and lubricants. His work appears at a time when demands on
bearings were increasing rapidly. The paper is important for its identification of
negative viscous friction at low velocities. Stribeck's data do not extend to the
boundry lubrication regime; the form of what is now called the generalized Stribeck
curve came later from a synthesis of the work of Stribeck, Sommerfeld and Biel.

Tribology: Theoretical
Sommerfeld, A. 1904.

"Zur Hydrodynamischen Theorie der Schmiermittelreibung," Zeitschrift Fur
Mathematik und Physik, 50(1904) :97-155.

Sommerfeld solves the Reynolds equation for the lubricant flow in journal
bearings. Sommerfeld is aware of Stribeck's work, [02], and makes a point of the
agreement between his theoretical predictions and the data of Stribeck. The paper
is important to applied mathematics for its contribution of an original solution
method for a class of partial differential equations; and important to tribology for
the contribution of the curve that later became known as the generalized Stribeck
curve.
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Control: Theoretical **

Tou, Julius. 1953.
"Coulomb and Static Friction in Servo-Mechanisms," PhD Thesis, Electrical
Engineering Dept., Yale University.

Control: Theoretical
Tou, J. and Schultheiss, P.M. 1953.

"Static and Sliding Friction in Feedback Systems," J. of Applied Physics,

24(9)1210:17.
Tou applies describing function analysis to study the closed loop control

of mechanisms with static and kinetic friction. He assumes an instantaneous
transition from static to kinetic, as shown in figure 1.1. The treatment is quite
thorough - very little that is contained in the score or more of subsequent articles
applying similar analysis is not to be found in Tou. The journal article is condensed
from the thesis; space available to the journal article does not permit presentation
of all of the work of the thesis, and the extra effort of obtaining the thesis is well
rewarded.

Tou's conclusion, obtained many times since, is that a static friction will cause a
controller with an integral control term to limit cycle. For a particular system, the
analysis and analog computer simulation show minor loop (velocity) feedback to be
stabilizing. Tou provides three references to work in describing function analysis.
Like Tustin, he makes no reference to the literature of friction.

Robot Control: Theoretical
Townsend, W. and Salisbury, J.K. 1987 (March 31-April 3).

"The Effect of Coulomb Friction and Sticktiob on Force Control," Proc. 1987
Inter. Conf. of Robotics and Automation, Raliegh: IEEE, pp. 883-9.

Townsend and Salisbury apply describing function analysis to the study of
limit cycling exhibited by systems with static friction and integral control. They
choose the static plus kinetic plus viscous friction model of figure 1.2. Townsend

and Salisbury are apparently unaware of Tou or others who have applied similar
analysis to the same problem. The paper is good however, and makes an interesting
contribution by employing the Routh criteria to examine input-dependent stability
that can arise when control system parameters are experimentally tuned. As control

I
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system parameters are virtually always experimentally tuned in robot controllers,
this is an important contribution.

Control: Theoretical
Tustin, A. 1947

"The effects of Backlash and of Speed-Dependent Friction on the Stability of
Closed-Cycle Control Systems," IEE Journal, v. 94, part 2A:143-51.

In this fascinating article that anticipates by an hour the introduction of
describing function analysis, Tustin explores the implications for stability of an
assumed exponential friction model (see chapter 5.2). The paper is important
because it explains stick-slip behavior in systems that do not have integral control.
The impact of backlash and speed-dependent friction are studied by vector graphic
methods, more modern methods may achieve the same result and be easier to apply.

Adaptive Control: Experimental
Walrath, C.D. 1984.

"Adaptive Bearing Friction Compensation Based on Recent Knowledge of Dy-
namic Friction," Automatica, 20(6)717:27.

Walrath presents a thorough piece of experimental work with the object of
improving the accuracy of telescope pointing by adaptive friction compensation. He
starts with the Dahl model, but finds a higher correlation with velocity than with
position, and makes emperically justified modifications to the model. An adaptive
compensator is implemented on a digital computer and shown to give a factor of 5
improvement in RMS line of sight tracking error.

Additional References

Armstrong, B., Khatib, 0. and Burdick, J. 1986 (April 7-10).

"The Explicit Dynamics Model and Inertial Parameters of the PUMA 560
Arm," Proc. 1986 Inter. Conf. of Robotics and Automation, San Fransisco:
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Chapter 9

Introduction

9.1 Introduction

Forward Dynamic
Model

Inverse Dynamicf
Model

ontrol' f qqq actual--'-. Law - = (qq )

Commanded
Motion

Figure 9.1 A General Model Inverse Control Structure.

From the perspective of a controller, a robot arm is a machine to which forces

are applied with the result of motion. The relationship between the applied forces

and the resulting motion comprises the dynamic model; the applied forces are

sometimes known as the forces of motion. Unlike time invariant systems, such as

an elevator, when the robot arm moves this relationship changes, in some aspects

the relationship between forces and motion may change by as much as 300% in
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a fraction of a second. This configuration dependence within the dynamic model

introduces a level of complexity into robot control that is absent from the challenge

of controlling time invariant systems; complexity which motivates the use of inverse

model control schemes such as is shown in figure 9.1. The forward dynamic model,

which determines motions from applied forces, is represented by f(q, 4, 4). The

inverse dynamic model, f-1 (q, 41, 4), determines the required torques from desired

motions. In principle, if f-I(.) were known exactly it would be possible to achieve

error free motion. In practice feedback control structures, such as that shown the

figure, are used to correct motion errors. The model inverse control scheme, called

computed torque control when applied to robots, has received considerable research

attention because it promises to correctly account for the changing forces of motion.

Computed toruqe control is beginning to appear in industrial robots.

To employ computed torque control, the inertial parameters of the robot arm

must be known. These are simple physical properties: mass, location of center of

gravity and inertia; but a robot arm may have many parameters and they may be

difficult to measure directly. For these reasons parameter identification methods are

attractive. Parameter identification is the process of experimentally determining

fixedt characteristics of a system which affect the input-output relationship. In

our case the system is a robot arm, the input is applied torques and the output is

motion. Parameter identification has appeal because it can be applied to assembled

robots, possibly as they perform their intended task.

t In the general parameter identification problem the parameters may be slowly
varying rather than fixed. It is in this case that the parameter identification algo-
rithms actually have the greatest relevance. But for this analysis of robot dynamic
parameter identification, it is presumed that the parameters are fixed.

mo
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Uncertain measurements and systematic errors will introduce error into any

experiment: Heisenberg has relieved us of any uncertainty in this. In some cases the

error may be insubstantial; but in the identification of robot parameters noise can

be very considerable. This thesis is focused on the problem of the error in parameter

estimates that arises from experimental noise; the relationship between noise and

error will be investigated and a means of minimizing the error by careful trajectory

selection developed. Three noise sources will be considered: measurement noise

(uncertainty in determining what motion occurred); motion noise (uncertainty in

determining what torques were applied), and systematic error (errors in modeling

or biased behavior of sensors). These noise sources will give rise to two kinds

of error in the estimate of the robot parameters: bias (a systematic shift in the

measured parameters), and variance (a random shift in the measured parameters

that will vary from trial to trial of the experiment). Bias and variance are shown

schematically in figure 9.2. The connections between noise sources and parameter

estimate error are show in figure 9.3.

In many situations bias is the most grave estimation problem; thus sensor noise and

systematic error are the most troublesome noise sources.

The inverse dynamic model of the robot arm, f-'(.), and the noise models

used in this analysis are presented in chapter 10. Using these models and standard

parameter identification algorithms, the precise relationships between noise sources

and parameter estimate errors are derived in chapter 11. The analysis will show

the magnitude of the errors to depend upon the magnitude of the noise and the

level of excitation in the experiment. The magnitude of the errors will be seen to

depend upon the magnitude of the noise and the level of excitation, as is shown

schematically in figure 9.4.

I
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Deviation i
(Square Root Variance)

I
Parameter Space

Figure 9.2 The True Parameter Vector, Bias and Variance in Parameter Space

Bias Variance

Sensor Noise X X
(Random)

Motion Noise X -

(Random)

(Unmodeled Dynamics) I
Figure 9.3 The Contributions of Three Noise Sources to Bias and Variance.

Figure
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Parameter
Noise Power + Excitation determine. Bias and

Variance

Dynamic Model + Trajectory deterines Excitation
Choice

Figure 9.4 Schematic Relationship between Noise Sources, Excitation and
Parameter Error

In many situations the noise power is determined by the sensors and mechanism

used and may be affected only at great cost. The dynamic model, f(.), is largely

determined by the mechanism design. The engineer is left some freedom in the

choice of model complexity. While a change in model complexity will affect the

sensitivity of the experiment to noise, such a change does not affect the nature

or analysis of the impact of noise upon parameter accuracy. For now we shall

assume that a full model identification is desired. The issue of identifying a reduced

model is considered in chapter 14.3. Improved excitation is left as the principle

means of improving the accuracy of the estimated robot parameters. Good choice

of trajectory is the principle means of improving the excitation.

Excitation in a multivariate estimation problem is a subtle issue. The notion of

excitation might be approached by imagining standing in a dark space, attempting

to explore it with a pencil beamed flashlight, sweeping the flashlight about the

space seeing one spot at a time. The robot experiment yields up information

about one combination of parameters (one direction in parameter space) at a time,

the 'illuminated direction' changing as the robot moves along its trajectory. The

I



Section II: Excitation 9.1: Introduction 119

path of our flashlight in the dark (parameter) space corresponds to the sequence

of parameter combinations illuminated by the identification experiment. The

excitation of an experiment is the amount of light shown in the least illuminated

direction. The least illuminated direction may be illuminated better in two ways:

we may buy a bigger flashlight, or, if the light is unevenly distributed, we may

distribute the light more evenly. This thesis is about distributing the light more

evenly. As we shall see, in practical situations some directions in parameter space 0

can be 5,000 times less excited (illuminated) than others, offering considerable room

for improvement.

A method is presented in chapter 12 for selecting an experimental trajectory

offering maximally even excitation. The method employs the calculus of variations

to increase the illumination in the least illuminated direction. The method has been

applied to two experiments reported in the literature; the results of this application

are presented in chapter 13. And in chapter 14 the implications of poor excitation

and the prospects for attaining good excitation in practical situations are discussed.

Two broad issues arise in consideration of manipulator parameter identification:

the importance of obtaining the 'true' parameters and the merits of alternative

means of parameter measurement. As seen in figure 9.3, bias arises from two of the

three noise sources considered. From the standpoint of control, it can be argued

that the biased parameter set is in fact the most desirable parameter set: the biased

parameters set gives the minimum squared prediction error. This issue is taken up

more fully in chapter 14.2. For the purposes of this investigation it is taken for

granted that the mass parameters are true, physical quantities and that accurate

knowledge of these quantities is desired.
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While working through the lengthy development of adaptive control means and

their error processes it is possible to lose sight of the fact that we are measuring

physical quantities and that alternative means of measurement exist. The analysis

of error arising during parameter identification will show that it is difficult to achieve

an accurate measurement of the parameters: a few percent of noise can result in

tens of percent of error. Direct measurement of the parameters, for all its rigors,

and limited identification, in spite of its lesser generality, should be considered and

possibly applied in practical situations.

9.2 Prior Work

The literature of parameter identification is very large. In the past few years,

since the manipulator dynamic models themselves became available, attention has

been directed toward identification of manipulator dynamic parameters. In work

toward developing methods for robot dynamic parameter identification, Khosla

and Kanade [85] present on-line and off-line methods for identifying inertial

parameters. Neuman and Khosla [85] treat a similar problem in detail, and give

some consideration to identifying the kinematic parameters as well. Mukerjee and

Ballard [85] make the interesting suggestion of instrumenting each joint of a robot

arm with multi-axis force and torque sensors. This sophisticated instrumentation

would allow measurement of otherwise unobservable inertial parameters. Olsen

and Bekey [85, 86] also consider robot inertial parameter identification. In their

first paper, [85], they mention the issue that is the substance of this paper: the

problem of excitation. In their second paper, [Olsen and Bekey 86], they give

brief consideration to the impact of additive noise and propose filtering to limit

this impact. Acceleration estimation is one substantial noise source that has been

addressed in the theoretical study of manipulator parameter identification; [Hsu
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et.al. 87] and [Middleton and Goodwin 88] have proposed identification methods

which do not directly employ estimates of acceleration, however both proposed

algorithms require that a lead filter be applied to the velocity signal, a step

comparable to direct acceleration estimation.

Experimental work is important in demonstrating the utility of parameter

identification algorithms. Craig [86; 87] has demonstrated adaptive control,

incorporating on-line identification, of the Adept 1 arm; and Atkeson, An and

Hollerbach [861 have demonstrated the use of batch least squares estimation to

determine the inertial parameters of the MIT/Asada Direct Drive arm. These two

reports of experimental work will provide a vehicle to this thesis for the study

of noise processes during identification and the connection between excitation and

noise immunity. Details of excitation and sensor noise will be taken from these

experiments and used to show the importance of the trajectory selection in practical

situations.

Slotine and Li [87a, 87b, 86] have also presented experimental results in

manipulator parameter identification. Their algorithm combines sliding mode

analysis with an output error update. With some over simplification, in linear

identification an equation error algorithm employs estimates of the true system

state while an output error algorithm employs estimates of the system state derived

from the model and inputs. This distinction substantially affects the analysis of

noise and error. The analysis presented in this thesis will apply to the equation

error formulati, is: Slotine and Li are unique among those presenting identification

methods for manipulator parameters in presenting an output error formulation. An

analysis should be carried out of the noise and error processes for the output error
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formulation; in particular, such an analysis should address the impact of unmodeled

dynamics.

Addressing noise in linear parameter identification, Mareels et.al. [87] discuss

the connection between excitation and the sensitivity of the parameter estimates to

noise. Kalaba and Spingarn [82] discuss the problem of achieving good excitation

for non-linear systems. Widrow and Stearns [85] thoroughly discuss the LMS

algorithm, which was used by Craig [86], including attention to the variance and

convergence properties. Mendel [73] and Ljung [87] address several identification

algorithms with attention given to identification in the presence of noise. Finn [74]

provides a good treatment of the estimation problem from a statistical point of view.

Kendall and Stuart [731 discuss the estimation problem at a more advanced level

and address the problem which arises when there is uncertainty in the knowledge of

the state variables, as is introduced here by considering sensor noise. Their section

on functional and structural models, (The Advanced Theory of Statistics, volume

2, pages 391-435) is one of the most readable passages in the advanced statistics

literature.

Work toward determining the mass parameters of a manipulator from engineer-

ing data is reported in [An, Atkeson and Hollerbach 85] and [Tarn, Bejczy, Han and

Yun 85]. Direct experimental measurement of the mass and inertial parameters of a

6 degree of freedom robot arm is reported in [Armstrong, Khatib and Burdick 86]. *

The original contributions of this thesis lie in the application of noise analysis

to the identification of manipulator parameters, with particular attention to the

problems that arise in robotics. A measure of experimental sensitivity to unmodeled

dynamics is developed and demonstrated, and the bias introduced by sensor noise

(output error) is brought to light and shown to be substantial. The level of
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excitation provided by practically achievable trajectories is, for the first time,

addressed directly through the use of practical examples. Taken together these

developments lead to the means to evaluate whether robot parameters may be

accurately determined through parameter identification.
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Chapter 10

The System and Noise Models

10.1 A Model of Manipulator Rigid Body Dynamics

The rigid body model of manipulator dynamics may be written [Craig 86]:

nTk = nobk(q, 4, q) 0* (10.1)

where .,r is the torque at joint n at sample time k;

n'k is the regressor vector, comprising functions which
constitute the rigid body model;

of is the transpose of 0.

(q, 4, 4l) are the joint position, velocity and acceleration;
0* is the true parameter vector;

n is the index on the joint number;

k is the index on the sample time;

Several things are to be noted here: a discrete time model is used, and the

notation is that of linear identification and adaptive control, rather than that used

elsewhere in robotics. Additionally, ,urk and n¢k are indexed on the joint number, n,

whereas 0* is not. Many inertial parameters appear in the equations of more than

one joint, and data from several joints may be combined to produce an improved

estimate of 0*. This merging of data can only be variance weighted if noise analysis
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is undertaken. Finally, some of the functions within 0 include accelerations which S

are often difficult to measure. Identification methods have been presented which

do not employ measured accelerations, e.g., [Slotine and Li 86], [Hsu et.al. 87] and

[Middleton and Goodwin 88]. These methods may avoid the problems attendant

with estimating acceleration, but noise and excitation remain issues. In particular,

it is shown that a well-conditioned R is necessary to minimize the effects of

unmodeled dynamics.

10.2 The Noise Model

The choice of noise model is, to an extent, up to the investigator. To provide a

model sufficient to capture noise processes relevant to robot parameter identification

experiments, I will introduce three noise components:

1. Sensor Noise *= + ,E A(0, C-)

(Random)

2. Motion Noise " - '0" +, F E r(0,o2);
(Random)

3. Systematic Error 7-= 0*'0 + +v, v E Lw,. (10.2)
(Unmodeled Dynamics)

where qS is the true regressor vector; S

is the estimated regressor vector;

4is noise introduced by sensor noise;

F" is a random contribution to the torques at the joint;

V is a systematic error contribution; 0
AT(0, a 2) is a random variable with zero mean and a 2 variance;

L,, is the set of bounded functions. 0
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The regressor vector, O4k(q, €l, q), depends upon the position, velocity and

acceleration of the mechanism. Noise in the measurement of these quantities will

introduce noise into the calculated value of 4. This noise, 4, is taken to be normally

distributed and uncorrelated with 0*, F, or v. The system model, equation (10.1),

provides only for torques predicted by the rigid body model; terms F and V provide

random and systematic torque signals. The random torques may arise from driver

noise, external disturbances or a random component of friction. The systematic

contributions may be physical torques, such as unmodeled friction or flexibility; or

may be virtual torques which arise in systematic error in equation (10.1).

The system model, eqn (10.1), can be augmented to include the three noise

sources:

= (4 + Ok)0* + Fk + Vk (10.3)

By evaluating the expected value of 0 , the parameter misadjustment, using

the augmented model of equation (10.3), the bias and variance in the parameter

estimates can be determined. The bias is an offset between the true parameter values

and those that will be estimated by the algorithm given infinite data. Note that

this definition of bias is somewhat different from the formal definition of statistics

(Fisher's definition): here bias is defined with respect to the true parameter values,

0*. The variance describes a region in which the estimated parameters may be

expected to lie. The region's shape is determined by the parameter covariance

matrix, Ci-, the size is determined by the required confidence.
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10.3 A Note On Notation

In this paper many variables have all or several of four degrees of freedom. The

degrees of freedom are:

N the number of joints;
R the number of basis functions;
K the number of stages in the identification trajectory;
M the number of iterations over the identification trajectory

during the parameter identification experiment. ]

For consistency, an upper case letter N, R, K, M will indicate the maximum count

in a dimension; and a lower case letter n, r, k, m will serve as the index on the

respective dimension. Thus

n k-

which is a scalar, is the r th regressor vector element, contributing at the nth joint,

evaluated at the kh stage of the trajectory on the mt h iteration over the trajectory

during the identification experiment. R is the number of individual functions in the

model. the vectors 0' and 0 are both (R x 1). The trajectory stage number, k, runs

from 0 to K and repeats. This notation arises out of the assumption that a fixed

trajectory is repeated M times.

The absolute time (clock time) of a sample is given by: I
time = (m*K+k)*AT.

where AT is the sample time period.
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For reference, the definitions of the principal variables used in this paper are

provided here.

n'rk is the torque at joint n and trajectory stage k;

T is the concatenated vector of torques: [rO ... TK]', it is (K x 1);

0b is the regressor vector, the basis functions of the model;

of' the transpose of 4,;

It is the concatenated vector of 0!', it is (K x R);

0 is the parameter vector;

0* is the true parameter vector;

are the estimated parameter and regressor vecs, see (11.1) and (10.2);

O 4 are the parameter misadjustment and regressor noise vectors;

V F are systematic error and torque noise, see eqn (10.2);

N is the concatenated vector of systematic error contributions [VO ... vKI;

p is the bias susceptibility, see eqn (11.18);

1Z is the input correlation matrix, see eqn (11.10).

Definitions pertinent to the study of the on-];ne identification algorithm:

r is the gain matrix, chosen by the engineer;

I is the identity matrix;

Q is the eigenvector matrix of RZ;

A X Ar are the eigenvalue matrices of R and F;

C is the parameter covariance matrix, see eqn (11.10).

Definitions pertinent to the optimization algorithm:

B C are weighting matrices assigning cost to control (acceleration) and jerk;

J H are the cost function and the augmented cost function to be minimized;

Lk is the cost at stage k;

A is the vector of Lagrange multipliers.

,.~ ~~~ Jill J. 1,- , 11I o1~~~a- ,
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Operations:

4[.] is the condition number of matrix (-);

[.] &[.] are the smallest and largest singular values of matrix (.);

E{.} is the expected value of (.);

II is the product operator.

I.

I



Chapter 11

Noise Analysis of the LMS and Least
Squares Identification Algorithms

11.1 The Basic LMS Parameter Identification Algorithm

To study the LMS parameter identification algorithm we may represent the

parameter misadjustment by writing

" - 9+9 (11.1)

where 9 is the estimate of the parameter vector;

is the parameter misadjustment vector.

The LMS parameter update equation is [Craig 861:

ik+I = Gk + E .n u'k nek (11.2)

where Ck is the equation error, Cek = (nrk - ek~ ik)

3r" is a gain matrix, set arbitrarily and usually diagonal.

The rI matrix is subscripted because it is possible that different gains would be

applied to data from the several joints, especially if the noise or 11.011 vary markedly
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between joints. For the remainder of this study, summation over the joints is S

implied, and the subscript n is dropped. Substituting equations (10.1) and (11.1)

into (11.2) gives the error transition equation:

0 k+1 = (I - r k ;)Wk (11.3)

For the parameter estimate to converge to the true parameters, (that is W --, 0),

the matrix fI -0; ] must be positive definite over each sufficiently long portion of

the trajectory, leading to the customary persistent excitation condition [Craig 86;

Sastry 841:
'4-p

3 > st. VI oI < r - k'¢ < 0 1
k=1

p>R

where I is the identity matrix;
R is the number of basis functions in the model.

The requirement for accurate identification in the presence of noise we will see to

be stronger: a must not only be positive, it must be reasonably large; this is the

requirement of sufficient excitation.

11.2 The Consideration of Noise and Evaluation of Bias

The parameter misadjustment resulting from expermental noise may be studied

by augmenting the error transition equation, (11.3), with the system model including

noise, (10.3), giving:

6(k+ 1) 1 (- -r k k)e k rOk(A 0* + 4 + ~). (11.6)
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By taking the expected value of each side of (11.6) and using the assumption

that the system has reached steady state, that is (E{O(k+I)} = E{fk}), the

expected bias can be determined. The covariaace of 9, i.e., the variance in the

parameter measurement, can be determined by taking the expected value of the 4

covariance matrix under the assumption that the covariance has reached steady

state. The existence of a steady state and asymptotic convergence of the algorithm

to that state have been demonstrated in [Craig 86] and elsewhere.

E{O-(k+l)} = E{(I - rk )Okk - F (iek0* + ik + v)) (11.7)

Achieving steady state implies that

K

i: Ee(k+l) (11.8)

k= EF~f-r- - r &k(4)k 6* + F + v)}

Using the linearity of the expected value operation to move the summation in under

the expected value operation and expanding into (4)* - 4) gives:

K K K

O= -EJE r{Z1'4 k - E{r lk k) - E{E V) (11.9) I
k=O k=O k=o

where many terms have been eliminated using the fact that 4 and i are
uncorrelated with 0*, 0* or v.

E{O}, and therefore E{O}, are not stationary in equation (11.9). They move as the

experimental trajectory progresses. In order to determine the average bias, which
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is independent of the rate gain, r, the assumption of slow adaptation is invoked.

If r is sufficiently small the expected 0 does not depend upon the stage of the

trajectory and Wk may be replaced by W. Defining two important matrices, the input

correlation matrix and the regressor covariance matrix:

K
Input Correlation Matrix z = (4) E 'k ;

k=O (11.10)
K

Regressor Covariance Matrix C = (')E{Z k I}

k=O

equation (11.9) may be reduced to:

K
0 = -r 1E{1} - r CE{} -r k (11.11)

k=O

Expanding 0 into (0* - W) and solving for E{9} yields:

K

E{a} = (1+ + C )-1 C'- * - (1. + C- E *vk " (11.12)
k=O

11.3 Bias Due to Random Sensor Noise

In equation (11.12) we see two sources of bias in the estimated parameters, one

due to random noise in the regressor vector, C-, and the other due to unmodeled

dynamics, v. Considering only the effect of sensor noise, the bias is given by (see

[Mendel 73], chapter 5.3):

E{} = (7? + C C- *  (11.13)

11~~~~~ ~ ~ ~ !111,1 !i1511I u ZWN M
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The contribution of random noise in the regressor to the bias is not often discussed;

consideration of the cost function minimized by the LMS algorithm, E{e 2}, shows

how the bias arises:

ek = (rk - 4k i) = (k- , (11.14) 

where only parameter misadjustment, 0, and regressor noise, 4, have been consid-

ered. The LMS algorithm will seek to choose the value of 9 that will minimize the

magnitude of E{e 2}. The O* term is minimized by making (0 -+ "). However

40 is minimized by making (3 --- 0) !! The error signal due to 4 bucks the

error signal due to 0 and tends to cause the LMS algorithm to underestimate the

parameters.

11.4 Bias Due to Unmodeled Dynamics and Bias Susceptibility

Considering only the effect of systematic error, the bias is given by:

K
E{e} = -[IZ]-'(1) 4 *J ,k (11.15)

k=O

The identification algorithm attempts to fit the available model parameters to the

unmodeled dynamics. The outcome will depend upon the correlation of the model

basis functions and the unmodeled dynamics, and upon the conditioning of the RU

matrix.

An upper bound on the expected parameter misadjustment vector may be 1
determined from equation (11.15); this bound, the bins sensitivity, is given by:
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Mx{ IIE"0}II-} 1 -- bias sensitivity (11.16)

where A" is the concatenated vector of v, i.e., the elements vk stacked

one atop another: A = [Vl... vK]' .

Note that IArIl equals the root mean squared average of v, the L 2 norm is used.

Bias sensitivity has the units of experiment sensitivity, which is the ratio of the

size of the true parameter vector to the size of the applied torque, or output per

input of the identification experiment:

I11 experiment sensitivity (11.17)

where T is the concatenated torque vector, T is (K x 1).

The ratio of bias and experiment sensitivity is a dimensionless quantity, bias

susceptibility, that will be a coarse but useful indicator of the robustness of the

experiment to systematic error.

bias sensitivity (1 / X/ ['l) (11.18)

= experiment sensitivity - (110*11/IITII)

where y is the Bias Susceptibility.

The bias susceptibility is the maximum amplification of error due to unmodeled

dynamics possible in a particular experiment. As a measure, bias susceptibility will

be most useful if the ratio of modeled and unmodeled dynamics is approximately

known, in which case a bound on parameter bias may be determined by
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11 II II (11.19)

Bounds determined by matrix norm operations are often quite conservative.

Equation (11.19) will over estimate parameter bias when A has very little contri-

bution in the direction of weakest identification, as will be the case when A is the

consequence of higher order bending modes separated in frequency from the modes

represented in 0, the model. But manipulators often exhibit unmodeled dynamics of

other sorts, such as friction, actuator non-linearities or ripple, and imperfections in

the kinematic model underlying the dynamic model. All of these contribute torques,

X, which will be interdependent with the elements of the model, 40. Consider that

the structure of the ARMA model can represent the true dynamics of any linear

system of the correct order, but the structure of a manipulator dynamic model

can represent the dynamics of only one design of manipulator. An example in

chapter 13.2 shows that IIE{O}1I can approach the bound of (11.19) in a plausible

circumstance.

11.5 The Consideration of Noise and Evaluation of Variance
and Convergence Rate

Analytically evaluating the convergence rate of the sequential algorithm when

the adaptation is fast is a solvable problem, [Armstrong 87], but leads to a

complicated matrix product that offers little insight. Furthermore, the parameter

covariance matrix, Ci-, is non-stationary in this case, and thus difficult to analyze. To

permit analysis that will offer insight into the convergence and covariance behavior

of the sequential identification algorithm, stationarity can be artificially introduced

by choosing F small enough to give slow adaptation, that is, (KFT1) < 1. This

assumption, that 1' is small enough to give slow adaptation is invalid in many
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experimental situations. For example, in the Adept 1 arm identification experiment,

[Craig 86], r tuned to give a steady state random parameter misadjustment of

±5% gives (Kriz) - 10. Reducing IF to give &(KFJ) ; 0.1 would result in a

prohibitively long experiment, roughly 25 hours for 95% convergence. None-the-

less there is value in the limited analysis: it will give useful insight and provide

the analytic handle needed for experiment optimization. Once a trajectory has

been chosen using the slow adaptation analysis, it is possible to verify that the

true behavior will closely follow the predicted behavior by evaluating the exact

convergence rate. In most cases the true behavior will closely follow the predicted

behavior because the performance of the identification algorithm is dominated by

the smallest singular value of the gain scaled excitation matrix, which will virtually

always be much less than one. The assumption of slow adaptation is applied widely,

often implicitly, in the study of adaptive control and is a requirement for averaging

analysis (see [Anderson et.al. 86]).

By repeated application of the error transition equation, (11.23), we may

determine the change in the parameter misadjustment that will occur with each

iteration over the entire experimental trajectory:

K

i =+ l1l(1- F k~o ~ (11.20)
k=O

where m is the index on trajectory iteration.

The polynomial expansion of (11.20) may be formed and, if the adaptation rate is

sufficiently slow, all terms of r' and higher order may be eliminated, leaving

I
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K
W*", (I-rE ;k) = (I-Krn) Wo (11.21)

k=o

If Kri is positive definite and not too large, (11.21) will converge. Using the

assumption of slow adaptation, (11.21) may be approximated by a continuous time

system which will decay toward zero error with exponential time constants given

by, [Widrow and Stearns 85]:

= IT (11.22)
IIA X112

where r is the rth exponential error decay time constant;

11'A112 is the magnitude of the rth eigenvalue of F iz;

AT is the sample period.

Note that because the rA are the eigenvalues of r 7?, they are not necessarily real.

Augmenting (11.21) with the noise model of equation (10.3), as was done in

equation (11.6), and again retaining only zeroth or first order terms in r gives

1= (I - r O1 k) - r k (k 0* + Fkr + z";) (11.24)

k=O k--

The covariance of the parameter misadjustment vector may be found by taking the

expected value of the outer product of W. We are concerned here with only the

random portion of the parameter misadjustment, so we will remove the parameter

bias from 0 by redefining 0 according to:

{(7?+C)- - * + Ck Vk1 (11.25)
k=O

bo =om IF 11 r ( +cI .o r ~ -y '~} 1.
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The hypothesis of slow adaptation is used to treat W as a function of m only. The

error transition equation becomes:

0(k+1) = ok - r( p + c; ) o + rA(e + B) - r(. 26)
+ r~ -r*F; (11.26)

+r~v -r*;

where for compactness two lumped terms are used:

A = (* + *')

B = thebias: {(1Z+C-)lC-6* - ( + C)- K0 k 4vk}.

By taking the expected value of the matrix outer product of equation (11.26) the

covariance transition equation is formed (transposes are eliminated from symmetric

matrices and terms in F to the first power are omitted because E{I} = 0.

IgM
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Terms Governing the Covariance Transition Behavior:

C-Om-+ ) = C - Ci6 ( R + c )r- r ( i + )a.

+ r (R + C ) C ,,(i + c

Terms That will go to zero Under the Expected Value Operation:
(4O to the first power)

+ W(B+W)'A'r - W-olr+ Wvj6'F

+ IA(eO + B)G' - r*I*

Terms That will go to zero Under the Expected Value Operation:
(4, to the third power) (11.27)

- 1'(iz + C WB+ W)'A'r + I'(iz + c)e'ol

- r (iz + C ) Wv ' r - r A(O + B) O'(7Z + c

+ ro*;Ve*3V(% + c r+ r4,y/e - r~ve'(1R + c)

Noise Terms:

+ FrA(W + B) (B + W)' Ar r rA(9 + B)e0' 0*'I'

+ r A(B + B) v ,'r r l04*4/r(B + W)'A'1r

+ r#o*e*I4,4,*Ir -r4,';o'vjr + r Y(B + O)'A'r

- rv*olr+ rv + ror

Equation (11.27) is not as daunting as it seems, by using the assumption that

the covariance has reached steady state, eliminating the terms that go to zero

under the expected value operation, and combining the noise terms equation (11.27)

reduces to the matrix Lyapunov equation:
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o = -c(z + c )r - r(oz + c; )ci + r(iz + c )ci(R + c )r
+ r r, r (11.28)

where E - {" 'e" + 4i + 4
_(4.' + V')(8 + (1z + C )-,(ce* - k i- k))}.

The parameter covariance matrix, C-, satisfying (11.28) may be found using

the Kronecker product. Equation (11.28) can be simplified in a way that provides

useful physical insight if two assumptions are made: 1Z > C- and r > v .

These assumptions will be valid when the noise sources are small in relation to the

signal power of the identification experiment. In the practical examples studied in

chapter 13 the first assumption is found to be invalid; but the analysis to follow

will provide a course but insightful measure of the steady state covariance of the

LMS algorithm. Equation (11.28) should be evaluated when an exact measure is

required. When the two assumptions hold, equation (11.28) reduces to:

o =-r - 'r' + Krzcpz'r + V2rlzr' (11.29)

where v2 = E{(40*)2} + E{-}.

This matrix Lyapunov equation may be solved explicitly when the experimental

trajectory (and thus R) is known. If r is chosen which commutes with 1?, it is

possible to find an analytic solution to equation (11.29). Borrowing from [Widrow

and Stearns 85], we may rotate the coordinate system of the parameter space from

the natural coordinates into the normal coordinates of the gain scaled excitation
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matrix. Relying on the fact that IR must be positive definite and symmetric, we

may define Q and A p such that

= QA ,t Q' (11.30)

where Q is the orthonormal eigenvector matrix of R;

A I is a diagonal matrix made up of the eigenvalues of R

Because F has been chosen to commute with R,

QTQ = Ar (11.31)

where Ar is a diagonal matrix of the eigenvalues of r.

Note that the elements of Ar are ordered according to the order of eigenvectors in

Q, not according to size. In the light of equations (11.30) and (11.31), we see that

r R may be written

riz = QArQ'QAIQ' = -yQAQ' (11.32)

where 7jA is a diagonal matrix of the eigenvalues of r R ;

-1 is a scalar chosen so that All equals one.

Now defining CQ to be the covariance matrix in rotated coordinates,

CQ = Q, CwQ

equation (11.29) may be reduced to:

0 = -- tACQ - -fCQA + t 2ACQA + - 2 v2A'r'Q. (11.33)
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Because A is diagonal it is straightforward to expand the matrix multiplications of

equation (11.33), giving a scalar equation for each of the elements of CQ:

-7v'Aii ________-vAJ (Q'rQ)ij =(i j) Ar A ij  (11.34) _i
Cqij = (Aii + A,,) - -yAjAii= (A, + A,3 ) - -tA,,AA (

where Aii is the Oh eigenvalue of r iz;

v2 is the average noise power;

Q is the eigenvector matrix of 1Z which serves as the rotation from

normal to natural coordinates;

r is the gain matrix, chosen by the engineer;

-y is a scaling parameter, determined by the engineer's choice of IF.

Ar is, of course, diagonal, thus CQ is diagonal.

There are two special choices of r which commute with 7Z: the identity matrix

and 7Z.-'. In linear identification these two choices correspond to the Least Mean

Squared Error (LMS) and Recursive Least Squares (RLS) algorithms respectively.

Owing to slow adaptation -f Aii < 2. C- may therefore be approximated by:

"yV2

r =i : j -
2 =(11.35)r = 'R-  -w-2"- 1 •
2

In a sense these are extreme choices of r along an axis from extreme disparity of

convergence rates and uniform parameter variance to uniform convergence rates and

extreme disparity of parameter variance, as shown in table 11.1. The direction of

weakest identification is that of the eigenvector of R corresponding to the smallest

eigenvalue of R.
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Table 11.1 Convergence Rate and Error Resulting from Special Choices of r.

Choice of r Convergence Variance, C-, Systematic Error

-Y I Most Weakly Uniform in All
(LMS) Identified Direction Directions. Systematic Error

c[R] Slower. is not Affected

by the Choice
I- Uniform in All Most Weakly of r.
(RLS) Directions. Identified Direction

c[%] Noisier.

Note: K[ is the condition number of 1R

11.6 Making the Choice of r

It has been suggested that special choices of r will result in an estimator

performance substantially better than that predicted above. One never gets

something for nothing. If the slow convergence in the weakly identified direction

is compensated with a large gain in r, an increase in the noise sensitivity of the

experiment results. For the case of slow adaptation, and r chosen to commute with

1Z , the ratio of convergence rate to RMS parameter deviation is fixed by ![ 7].

If adaptation in the parameter space direction of weakest identification is

decoupled from adaptation in the directions of strong identification, equation

(11.35) may be extended to rapid adaptation. That is, a [KFr] < 1 , rather than

&[Kr 1.] i< 1, is sufficient for the analysis above to apply.

I:
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In general fast adaptation will introduce coupling: the directions and rates of

adaptation rotate and change as the manipulator progresses along the experimental

trajectory. In the two experimental situations studied this coupling was small.

11.7 Noise Analysis of the Batch Least Squares Identification Algorithm

Starting with equation (11.1), it is possible to identify the parameters, a, by

solving the weighted normal equations [Atkeson, An and Hollerbach 86]:

The Model: T = * ;

The Parameter Estimate: 0 = [$W$']-1'WT (11.36)

where -* is the true concatenated regressor vector, V* is (K x R);

$ is the estimate of the concatenated regressor vector;

T is the concatenated torque vector, T is (K x 1);

W is a weighting matrix that may reflect varying degrees of

confidence in the elements of $ and T.

Two standard results of least squares estimatimn theory, also called multiple

regression, are [Finn 74]:

1. Introducing systematic error (unmodeled dynamics) introduces bias:

if T = '0" +KA" , (11.37)

where X/ is the vector of torques produced by systematic errors; S

then E{O} = -['Wt]-14'WK . (11.38)

N M II ,11 I - , Z 111 1'€ 1, 1 ,Q C 11, I'll
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When W = I, equation (11.38) is exactly equation (11.15), which gives the bias of

the LMS algorithm.

2. If the experiment is corrupted by additive noise of power oa, that is

rTk = Ob0* + Fk, E{-} = o, E{} = 0, (11.39)

the parameter misadjustment covariance, Ci" = E{90'} is given by:

q = 0 2 [@'W 0]-' (11.40)

When W = I

q = O2 [jg]-. (11.41)

The analysis above employs a purely additive noise model; (11.39) does not

provide for noise in the regressor vector, $, as does the noise model of equation

(10.3). As the regressor depends on state, it reflects sensor noise. A complete

description of the effect of regressor noise is substantially more complex (see

[Kendall and Stuart 73]), evaluating the exact variance is beyond the scope of this

thesis. It is important however, to see the origins of bias introduced by sensor

noise. For this reason the expected value of the parameter misadjustment will be

evaluated with a noise model which includes only sensor noise will be considered.
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Introducing sensor noise into the regressor vector:

"= + * (11.42)

where V* is the true concatenated regressor vector;

is the estimated concatenated regressor vector;

is the noise in $ regressor vector, introduced by sensor noise.

Using the model of equation 11.36 and expanding V* according to equation (11.42)

gives:

T = .0*+ O* (11.43)

The normal equation solves:

$'W$- = V'WT . (11.44)

Multiplying equation (11.43) on the left by -' and combining with (11.44) gives

'W4O = V .WT = .WO +'WiO" (11.45)

Expanding $ and applying the expected value operation gives:

E{(.*'W, - - V'WIV + 'W$)O} = (11.46)

E{.'We 0} + E{I*'WtO*} - E{4'W-§O*}. S
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The expected value on the left is difficult to evaluate for finite data lengths

because ? is dependent upon, and thus correlated with, 4' in a complicated way.

But [44''multiplies each contribution of 4' to 90; thus, in the limit of infinite

data:

lim ~4~~- 0; E{i'i 4' 1 - E{4" $1 E{9O} (11.47)

Equation (11.47) is a assertion of the fact that as the data set becomes long, the

effect of any single noise sample upon the parameter estimate vanishes. Applying

this to equation (11.46) gives:

(E{@'W4'V} + E{'W i}) E{O} =(11.48)

(E,{t*'W V) + E{'W i)) 0* - E{4'W~} 0*

Incorporating the weighting matrix, W, into the definitions of 1R and C for the

analysis of the batch least squares algorithm, that is R~ = E{4A' W4} and

C- E{4"Wi}; gives:

E{6} = oz + C ) 'o * z + C ) 'C71 (11.49)

= 0* - (O + C;Y)- C.9 1

or

E{OI = (1Z + C} 1-C;9
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The bias of the batch least squares algorithm, shown in equation (11.49), is

exactly that of sequential LMS algorithm, shown in equation (11.13). This is

encouraging: the two algorithms will converge to the same result.

11.8 Summary of Noise Results

The method of this chapter has been to study the expected value of the error

transition equation using a system model augmented with experimental noise. The

noise sources considered were:

Sensor Noise,
Motion Noise,
Systematic Error.

In making the analysis it was necessary to employ several assumptions:

For the LMS Algorithm:

Slow Adaptation,
Convergence to Steady State,
Independence of the sensor and motion noise from other signals.

For the Batch Least Squares Algorithm:

Infinite Data Length; (comparable to Slow Adaptation).

The parameter estimation errors which result from the three noise contributions

are summarized in figure 11.1. In each square of figure 11.1 we see the inverse of

the input correlation matrix, Z-1. If this matrix is poorly conditioned moderate

-* noise contributions may have a large effect on the estimated parameters. In the

next chapter a method is described to improve the condition number of 7?.. In

the subsequent chapter the results of applying the improvement method to two

practical experiments are presented

- I
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Bias Variance

Sensor Noise Eli) (IZ + C)'C * i
(Random)

2
Motion Noise C- I
(Random)

Systematic Error E10} = -[7I,]1 (Ik) YE'-o 0* Vk

(Unmodeled Dynamics)

Figure 11.1 The Contributions of Three Noise Sources to Bias and Variance.
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Chapter 12

Generation of Very Exciting
Identification Trajectories

To maximize the convergence rate or noise immunity of an identification

experiment, it is necessary to maximize the minimum singular value of the input

correlation matrix, a[ 1Z ]. This is a non-linear path optimization problem that may

be solved with the calculus of variations. The cost function is most naturally stated

as a terminal cost: (1/Z[TZ]). But singular value cannot be evaluated knowing

only the terminal manipulator state; it is necessary to know each of the 1? matrix

elements. To evaluate a[JTI as a function of terminal state, it would be necessary

to augment the state vector with the elements of R, or, because 1R is symmetric

(R * (R + 1)/2) states. This would change the MIT/Asada arm problem from one

of 6 states to one of 126 states. Alternatively, the cost may be cast as a path cost

summed along the trajectory:

J = F[1Z

[IZ] = ZLk(x,u) (12.1)

k -

where J is the cost function to be minimized;

.F[ 1] is the cost to be minimized, either (1/aZ.]) or r. [1Z;

Lk is the cost as a function of state and control evaluated at stage k.

151
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To Determine L in closed form is unnecessary: it is sufficient to determine the

derivative of L such that

dJ dLk (12.2)

k

Exploiting the fact that "Z is formed by taking a sum along the trajectory, it is

straightforward to find dL. The derivative of '[1Z] can be formally written:

V 0"Z' ij dO (12.3)
i i I k Oro

where IZ ii is the (ii)th element of the IR matrix;

~k~4 is the partial derivative of the cost function with respect to
the (ij)t h element of the I7. matrix.

The partial derivatives of the 1Z matrix elements are given by:

(0 :r i,j;
) (k)4 'k :r = i;

O=k (1)'k :r=);
I (*)k :r i = j.

Bringing the summation along the trajectory of equation (12.3) through the

summations over i and j gives dLk which satisfies (12.2)

dLkZ Zr Rd

9 IZ (12.4)

j k dLkdf 0~

where L* is a constant of integration.

II
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Adjoining the Lagrange multipliers and setting their values to remove the state

derivative term from dJ gives the Hamiltonian [see Bryson and Ho 75, chap. 1]:

nk = L[Xk,4k] + 'k+lf(Xk,4k)=i
where f is the discrete time system dynamics: X(k+l) = f(Xk, 4).

The trajectory is specified as a sequence of accelerations, 41. The problem of

enforcing the specified trajectory, or mapping from desired to k is non-trivial, but-

is not addressed here. The issue at hand is trajectory selection, and it is presumed

that the experimenter has some means to bring about the selected trajectory,

(q, 4, )desired. The Hamiltonian is minimized by gradient search in the space of

trajectories, the operational equations are [see Bryson and Ho 75, chap. 21:

I 9(,af (x, 4)
=OL(X, ) + Ak+I fX, (12.5)

8' Xk ax

AK =0

kn = k f ), + (12.6)+ = - c.. .q

An iteration toward reducing J is taken by first sweeping the existing trajectory,

,forward, calculating the IZ matrix, calculating R' 1 ]/1 R i for each element

of the 1Z matrix and sweeping the A backward using equations (12.5). The next

trajectory is found by the control update equation, (12.6).

I~p
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Initial I negrate
Trajectory DyFnaic

Evaluate Partial Derivatives
Update the of the Cost Function at the
Trajectory, Trajectory End, Eqn. (12.3)Equation (12.6)

Backwards, Eqn (12.5)

Figure 12.1 Four Steps of the Optimization Procedure.

The optimization process is shown schematically in figure 12.1. The four step

process is repeated until the trajectory ceases to improve, which is expected to

occur at a local optimum.

12.1 Quadratic Cost Applied to Acceleration and Jerk

The optimization procedure of equation (12.5) will minimize .F[IZ] without

regard to acceleration limits or the undesirability of rapid accelerations. To

incorporate these factors into the optimization, cost is assigned to acceleration and

jerk; in each case a quadratic cost. Adding quadratic cost is approximate: in the

case of acceleration, the limit may come from actuator torque limits which are

reflected in a complex way in hard, state-dependent acceleration limits; in the case

of jerk, a complex relationship exists between exciting unmodeled dynamics and

the bias introduced into the identification. Evaluating the true constraints would

be quite complex, and for the moment there is more to be gained by addressing the

issue of gross trajectory selection.
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The quadratic cost functions may be introduced by writing:

Lk= J(Lk )dO + Lk + i'BI + q-'C'4 (12.7)

where B and C are positive definite matrices applying a cost to

acceleration and jerk;

q is the jerk, the third derivative of position.

The partial derivatives of equation (12.5) are evaluated as before. To set the

cost of acceleration and jerk relative to the cost of poor excitation, 'Bryson's rules'

may be used. We may set B and C according to:

IIBII ___d_[__]ld

(Acceleration Limit)2  (Tolerable r[ R ])2

If the relationship between jerk and excitation is known or assumed, the cost of jerk

may be set by balancing the increase in bias due to jerk, with the decrease in bias

due to greater excitation:

11C d__ [ __ _]l

(Tolerable Jerk)2  (Tolerabje1 lZ])2

Determining the tolerable F'[?.] or jerk is a matter of judgment. Furthermore,

the derivative of the F[1Z] with respect to the trajectory specification is difficult

to determine and not constant. When .F[7R] = (1/o_[7]), the relative costs of

excitation, acceleration and jerk must be balanced, otherwise increasing Z[ Z I will

tend toward greater accelerations indefinitely. In this case the algorithm will press

actively against the costs of acceleration and jerk, and the final trajectory will be

strongly influenced by the relative weights of the several costs. Minimizing x[T'] is

technically much easier because the condition number is a dimensionless quantity,
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and its use reduces the need to carefully balance the cost of F[ *9]1 with the costs

of acceleration and jerk. For a poorly conditioned matrix, the derivative of the

condition number with respect to the smallest singular value is much greater than

the derivative with respect to the largest, and the two cost functions are equally

effective.

12.2 Implementation Issues

The optimization was implemented with the starting point and trajectory

length fixed, the path was constrained as described above, and the end point

was unconstrained. These choices are not essential to the result. It would be

interesting to allow the trajectory length to vary, its selection based on a measure

of information per time.

Beyond selecting the cost function, the art of this procedure lies in the selection

of the update gain, p,,. The system that implements equation (12.5) incorporates

an automatic gain adjustment function. The matrix OY[R ]/I Zi is evaluated

numerically. dJ is then evaluated in two ways: directly, by evaluating jm+i - J';

according to the gradient with equation (12.4). If the two measures of dJ are nearly

equal, the performance surface is taken to be fairly smooth and Pcv is increased. If

the two are not close together, a smaller step is taken. The gain adjustment depends

in essence on a measure of the second derivative of the performance surface, and

causes the algorithm to behave more like Newton's method than simple gradient

search. In the cases studied, the performance surface was quite convoluted, with

long flat regions and sharp drops in multiple, irregular combinations. Prior to

implementation of the automatic gain adjustment, optimization was impractically

slow.
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There is a subtle implementation issue in the selection of units. Because some of

the elements of 0 have the dimension of inertia and others the dimension of moment

(see [Atkeson, An and Hollerbach 86]) it is possible to change the relative scale of

the elements of 9 and thus of 4' by changing the choice of units. A change in the

relative scale of the elements of 4) will result in a change in the condition number

of the input correlation matrix, c[R]. The experimental error is not affected by a

change in 4[ R] that is due to a change in units, because there is a corresponding

change in the relative accuracy of the elements of 0. But the optimization process

does not incorporate any information about the relative accuracy of the elements

of 4 and would be affected by a shifted i['R]. This issue was investigated for the

MIT/Asada arm and the Adept 1 arm experiments. It was found that MKS units

are suitable. Because i[?] is in each case quite large due to true poor excitation,

there is a broad range of choice of units that will have little detrimental impact

on tc[R]. In order for R? to be well conditioned, the distances which multiply the

moments should be nearly unity, angstoms or light years would be poor choices of

units for current manipulators.

Optimization was attempted using trajectories that could be represented as end

points of fifth order polynomial splines rather than the full arbitrary trajectory

representation. The effort was not successful, and I do not believe that the

very exciting trajectories can be adequately represented in a parametric way. A

trajectory of the MIT/Asada arm experiment has 900 degrees of freedom: 3

joints and 300 stages. A trajectory described by two end points, a via point

and two time parameters has 11 degrees of freedom. We may imagine a 900

dimensional trajectory space with the space of parametric trajectories existing as

an 11 dimensional manifold within the trajectory space. In order for the gradient

-4!
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search to find a good parametric trajectory, the good parametric trajectory must

exist and a continuous path must exist on the 11 dimensional manifold of parametric

trajectories from the starting trajectory to the good trajectory. Experience with

trajectory optimization suggests that good trajectories are rare, rather locally

good, and that the performance surface is very highly convoluted. All three of

these factors argue against discovering very exciting trajectories using parametric

trajectory representations. In fact, each of the three trajectories used by Atkeson,

An and Hollerbach [86] was found to be near a local optimum.

12.3 Local Minima, the Global Minimum and Path Constraints

All that has been said about optimization comes with the caveat that only local

optima may be found. In general, a different final trajectory will result from a

change in the starting trajectory. No practical method is known for finding the

globally optimal trajectory or even determining how good that trajectory might

be. Taking as starting points the three trajectories of [Atkeson, An and Hollerbach

87], the optimizer produced markedly different results: one optimization yielded a

condition number of 1,000, another 50. Engineering judgment, patience and good

luck are required to find a good trajectory.

Experience suggests that hard path constraints introduce local minima into

the performance surface and thereby pose a substantial problem for the algorithm.

During optimization, trajectories used on the Adept 1 arm tended to migrate

outside of the mechanism's joint limits. Constraint enforcement was implemented

by adjoining additional Lagrange multipliers [Bryson and Ho 75, chap. 2], but this

limited the improvement achieved: the optimizer would get stuck in local minima

near the starting trajectory. To achieve better improvement, it was necessary to
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relax the path constraints and repair the trajectory manually. I believe that a

substantially better trajectory for the Adept 1 arm experiment could be found if a

larger space of starting trajectories were examined or the joint limits enforced in a

better way.

The quadratic cost added to acceleration and jerk in equation (12.7) did

a satisfactory job of keeping the required accelerations within bounds. These

additional cost components did not seem to complicate the problem of local

minima, possibly because they were smooth cost functions, rather than sharp path

constraints.

.0l

_0
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Chapter 13

Results

13.1 Comparison of Original and Very Exciting Trajectories

The trajectory optimization procedure was applied to the identification experi-

ments reported in [Atkeson, An and Hollerbach 86] describing identification done on

the MIT/Asada direct drive arm, and [Craig 86] describing adaptive control applied

to the Adept 1 arm. The r.[1 ] was optimized with the procedure of section 12; the

results are summarized in tables 13.1 and 13.2. The rms jerk, 41, is included in these

tables as a measure of the degree to which unmodeled flexibilities will be excited.

Table 13.1 shows that [7aZ] for the MIT/Asada arm identification is improved by

a factor of 34. An, Atkeson and Hollerbach choose a minimum jerk trajectory, so

it is not surprising that the jerk is increased by the optimizer. Table 13.2 reports

the results of applying the optimizer to the Adept 1 arm experiment. The a[7Z] is

improved by a factor of 27. The trajectory jerk is substantially reduced in this case

because Craig employed the bang-coast-bang trajectory generator of the Adept 1

control system.

160
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Table 13.1. Measures of the Original and Optimal Trajectories,

MIT/Asada Arm Identification.

r.[ 0_1R] RMS Jerk

MIT/Asada Arm Identification

Trajectory 2 5,710 0.15 0.026

Optimized Trajectory 48.7 5.2 0.041

Table 13.2 Measures of the Original and Optimal Trajectories,

Adept 1 Arm Identification.

X[R] _c .] RMS Jerk

Adept 1 Arm Identification
Trajectory 4,576 0.0074 1.17

Optimized Trajectory 76 0.20 0.14

To assess the impact of noise, quantization noise affecting the regressor estimate,

4, are presented in tables 13.3 and 13.4. For the MIT/Asada arm experiment,

tachometers were the primary sensors, with acceleration estimated off-line by

symmetric first difference. A high order low pass filter with a cutoff frequency of 30

Hertz was applied to the acceleration data, reducing the quantization noise power.

For the Adept 1 arm experiment, shaft encoders were the primary sensors; velocity

and acceleration were estimated by first and second difference.

Table 13.3. Sensor and Estimate Noise, Assuming the use of First Difference.
AT is the sample period.

Shaft Encoder Tachometer

precision,q 0.010 - 0.0003 rad 0.04 - 0.005 full scale
a,2 (q2/12)

0 e (2/AT2 ) (q2/12) (q2/12)
Ow2vel (4/AT4 ) (q2/12) (2/AT2 ) (q2/12)
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Table 13.4. Standard Deviations of State Measurements in the Adept 1 Arm

and MIT/Asada Arm Identification Experiments.

Adept 1 Arm Identification MIT/Asada Arm Identification

AT(seconds) 0.004 0.005
apoa (radians) 1.6 * 10-5
o., (rad/sec) 0.0057 0.0036
a'C'J (rad/sec2) 2.0 0.54

The increase in excitation achieved by trajectory optimization is shown in figure

13. 1, q[1ZR is shown for the original and optimized trajectories.

% 5.20 0.200
c' 5.0- 0.20

6) .2
~ 4.0 *~

44U C)

-3.0 _ .1

0008
.~.2.0- -00

0.15 0.007
0-

Original Optimal Original Optimal

MIT/Asada Arm Adept 1 Arm
Identification Identification

Figure 13.1 Levt! of Excitation, -q[1Z]J, of the original and optimized trajectories

in the experiments studied.
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If the LMS algorithm is employed to estimate the parameters and the gain

is set to give a uniform 5% parameter estimate covariance, the convergence

rate is determined by the noise and excitation according to equation 11.22; the

95% convergence times for the MIT/Asada arm and Adept 1 arm identification

experiments are shown in figure 13.2. Because of the lower noise power of the

sensors, the choice of gain for the MIT/Asada arm experiment was actually stability

limited (see [Widrow and Stearns 85] for a discussion of stability limitation).

150- 144 882 900 .2
E 0
p 12 o 720

" o :90 "540 "

o N 30- 1204.0

0 --

Original Optimal Original Optimal

MIT/Asada Arm Adept 1 Arm
Identification Identification

Figure 13.2 95% Convergence time for the LMS algorithm applied to the two
experiments studied, the gain is set to give 5% relative variance.

Convergence time is not an aspect of the batch least squares algorithm, which

was employed in the MIT/Asada arm identification, the equivalent issue (linked

to convergence time by the choice of gain in the LMS algorithm) is parameter

covariance. In figure 13.3 the relative parameter deviation resulting from application
o

of the batch algorithm to the data of one trajectory iteration is shown; the deviation

11: 11 1 V 11 1 111 r c l
I~~~ li 1 h
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is computed with equation (11.41). The relative parameter deviation is a scalar

percentage measure of the uncertainty in the parameter estimate in relation to the

magnitude of the parameters themselves; it is given by:

Relative Deviation = (13.1)
110*11

30 "34%
v35 0/d

280-

21V-
E(Dc
cai 14/o-

W - 7.7%
c 0  6%/

91.3% I
Original Optimal Original Optimal

MIT/Asada Arm Adept 1 Arm
Identification Identification

Figure 13.3 Relative Deviation that would result from applying the batch least

squares estimator to the two experiments studied.

Equation (11.13) gives the bias introduced into the parameter estimate by

sensor noise. Using the sensor noise models presented in tables 13.3 and 13.4, the

expected bias in the two experiments studied has been computed, and is presented

in figure 13.4. The bias is presented as a percentage of the magnitude of the

parameter vector:
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Relative Bias = IEJW}tI (13.2)
11

cD

Cl) -.

._ 250/ -

0 0Z
S19.7%

5.6%
~5%-E 1.9%
00

Original Optimal Original Optimal

MIT/Asada Arm Adept 1 Arm
Identification Identification

Figure 13.4 Expected Relative Bias introduced by Sensor Noise.

Notice that for the Adept 1 arm experin.ent the bias due to sensor noise goc3 up

with the use of the optimized trajectory; this is the one case in which an optiimzed

trajectory does not do as well as that chosen by the original investigator. The bias
~due to sensor noise is given by equation (11.13): E{O} = (JZ + C- )-lC. O*.

Employing matrix norms to bound the bias shows:

I1(1? + c -)-'lIIC -I Bound Actual Value

Original CD 186 [[ [[ 4.0 [[ 744 > 0.72

Optimal I[ 5.3 II [[ 4.0 [[ 21.2 > 1.29



I

166 Chapter 13: Results Section II: Excitation

The bound comes down by a factor of 35, yet the value itself increases by 80%;

showing that matrix norm bounds must be treated with some care. In this case the

disparity arises because the noise power, C;- , is dominated by acceleration noise,

and the excitation problem arises in differentiating kinetic and viscous friction, a

velocity dependent distinction; thus both C- and "R are very highly skewed, and

their skewdness lines up in a special way to give this effect.

Equation (11.15) gives the bias susceptibility, p. Bias susceptibility is the ratio

of the potential sensitivity of the identification experiment to unmodeled dynamics

to the actual sensitivity to modeled dynamics. Because p is always greater than one

and is increased by poor excitation, a small contribution of unmodeled torques may

give a large bias. For the experiments studied it is plotted in figure 13.5.

30 27.4

2z 25 22.9 N

0-20-
0

2 : 1 5- \
"0 \\\
0o( 10- \
E ca\\
C -- 4.92

" "".5. 2.64

Original Optimal Original Optimal

MIT/Asada Arm Adept 1 Arm
Identification Identification

Figure 13.5 Bias Susceptibility in the MIT/Asada arm identification and Adept
1 arm identification Experiments.
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Views from above of the original and optimal trajectories for the MIT/Asada

arm identification experiment are shown in figure 13.6. In figures 13.7, 13.8

and 13.9, the acceleration curves for joints 1, 2 and 3 are presented. In figures

13.10 and 13.11 views from above of the original and optimal trajectories for the

Adept 1 arm identification experiment are shown. And in figures 13.12 and 13.13

expanded portions of the acceleration curves for joints 1 and 2 of the Adept 1

arm identification experiment are presented. And figures 13.14 and 13.15 show

the position curves for the original and optimal trajectories of the Adept 1 arm

identification experiment.

The chief thing which may be said about the plots of original and optimized •

trajectories is that it is not at all obvious from looking at them that the optimized

trajectories should be substantially better, much less a factor of ten to thirty better.

Figures 13.14 and 13.15 in particular show that an apparently superficial change in 0

the trajectory may give a tremendous change in the level of excitation.

0
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Figure 13.6 MIT/Asada Arm Identification Experiment: Original and Optimal
Trajectories in Cartesian Coordinates, Viewed from Above.
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Figure 13.8 MIT/Asada Arm Identification Experiment: Original and Optimal
Trajectories: Acceleration of Joint Two.
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Figure 13.9 MIT/Asada Arm Identification Experiment: Original and Optimal
Trajectories, Acceleration of Joint Three.
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Figure 13.10 Adept 1 Arm Identification Experiment: Opigial Trajectory in
Cartesian Coordinates, Viewed from Above.
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Figure 13.12 Adept 1 Arm Identification Experiment: Original and Optimal
Trajectories, an Expanded Portion of the Acceleration of Joint
One.
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Figure 13.13 Adept 1 Arm Identification Experiment: Original and Optimal
Trajectories, an Expanded Portion of the Acceleration of Joint
Two.
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13.2 Unmodeled Dynamics: A Case Study

Very little can be said generally about the effect of unmodeled dynamics upon

the accuracy or utility of identified parameters. Equations (4.5) and (6.3) allow a

bound on parameter bias to be ascertained in terms of bounds on the excitation

and disturbance. But the actual effect of a systematic disturbance may be much

less than this bound. To help give a feel for how sensitive to unmodeled dynamics

an identification experiment may be, the parameter bias introduced by tachometer

output ripple in the MIT/Asada arm identification experiment was evaluated. A

model for this systematic disturbance and knowledge of the experimental trajectory

will allow determination of the T and N vectors and the , and R matrices. All of

these evaluations depend upon the particular choice of trajectory.

Electro-.nechanical tachometers suffer from a multiplicative output ripple that

is akin to magnetic cogging in dc motors. The tachometers used in the MIT/Asada

arm identification experiment are low ripple devices: the ripple is reported to be

less than 1%, [Asada, Youcef-Toumi 84]. It is straightforward to determine the

error introduced into the measurement of velocity and estimate of acceleration by

this ripple:

WJ
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q = 4 * (1 + mag * sin(poles * q + phase))

q = q * mag * sin(poles * q + phase)
(13.3)

q = 4 * mag * sin(poles * q + phase)

+ q2 * mag * poles * cos(poles * q + phase)

where q is the measured velocity;

q is the velocity error introduced by the tachometer ripple;

q is the acceleration estimate error introduced by the tach ripple;
q, 4, 4 are the true joint angle, velocity and acceleration;

mag is the magnitude of the tachometer ripple;
poles is the number of poles in the tachometer;

phase is the phase angle between the tachometer poles

and zero angle of the joint.

This error will corrupt 0, and we may calculate N according to:

A" = '* (13.4)

where 4 is now defined by -(q, 4,4) - O(q, q, .

With -t calculated in the normal way, we may evaluate (see eqn. (11.38))

E{O} = -['Wt]-1 O'WA/" (13.5)

Tachometer ripple is one possible source of systematic error. The bias that

would be introduced by 1% ripple of a 6 pole tachometer into the identification

of MIT/Asada arm parameters is shown in figure 13.16. The figure wa made by
evaluating equation (13.5); it shows the dependence of the magnitude of the bias

upon the angle between the tachometer and the start position of the trajectory. The
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bias affecting the original and optimized trajectories are shown. The bias peaks at

1.2 Kg-m2 , or 7% of the magnitude of the parameter vector, 110"[[ = 17.7 kg-m2 .

In figure 13.17 the same effect is plotted as is in figure 13.16, except that the

tachometer is presumed to have 3 poles. Because of a coincidental alignment between

the disturbance and the eigenvector corresponding to the smallest eigenvalue of 7,

the 1% ripple introduces a tremendous error in the parameter estimate. The bias is

67% as great as the parameter vector for some possible mechanical alignments of the

tachometer (tachometer phase). The peak error introduced by this configuration

is 59% as great as the maximum bias predicted by equation (11.15). Figure 13.17

shows that by chosing a very exciting trajectory the sensitivity of the experiment to

systematic error is greatly reduced.

a 1

Originot

" .8

r 8.4

0.2 Opt Ima

9 59 10 ISO 299 259 300 350
Tachometer Phase (deg)

Figure 13.16 Magnitude of the Parameter Bias Vector, Plotted against the
Phase Angle Between the Tachometer Poles and the Joint Angle. 6
Pole Tachometer.



176 Chapter 13: Results Section II. Excitation
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Figure 13.17 Magnitude of the Parameter Bias Vector, Plotted against the
Phase Angle Between the Tachometer Poles and the Joint Angle. 3
Pole Tachometer.
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Chapter 14

Discussion

14.1 Why Seemingly Active Trajectories May Provide Poor Excitation

The basis functions, the columns of 0, of a manipulator model are fundamentally

different from those of linear systems. Manipulator models contain such elements

as {I1 and {cos 2 (2q) *1 4}, which can not be orthogonalized by any choice of input.

The basis functions of linear systems are complex exponential functions which, if

they are lightly damped or well separated in frequency, can be nearly orthogonal.

The examples of poor excitation for linear identification presented in [Mareels et.al.

87] provide as much excitation as the most exciting optimized trajectories of this

paper. It is not easy to choose an exciting manipulator trajectory - intuition can be 0

wrong. A trial and error search of trajectories made up of harmonic functions and

applied to the MIT/Asada arm experiment yielded x[1R] as high as 200,000, and

none as low as 5,700, the best achieved by An, Atkeson and Hollerbach [85]. The

researchers did well in their selection of trajectory. But trajectory space is huge and

seems sparsely populated with good choices.

177

= '-' " .. I': ' .W6WJ! '



178 Chapter 14: Discussion Section II: Excitation

14.2 Trajectory Tracking versus Accurate Identification

Whether or not an experiment is sufficiently exciting, parameters identified

using a particular trajectory will give a good model fit on that particular trajectory;

if unmodeled dynamics are present, the estimator will strive to fit them. There is

substantial evidence that good tracking performance may thus be achieved. Craig

found that tracking error was minimized by setting the adaptation rate to a large

value so that the parameter estimates swing wildly, [Craig 86]. Atkeson, An and

Hollerbach [861 report that in each of three trials tracking error was reduced by using

parameters identified on the experimental trajectory, even though large variations

appear between parameter sets.

Fitting model components to unmodeled dynamics is a limited approach to

good tracking: the model is valid only in an unknown neighborhood of the

trajectory of the identification experiment; and the neighborhood can be quite

small. Furthermore, because of poor excitation, a small systematic error can
introduce a large bias into weakly identified parameter combinations. The weakly .'

identified parameter combinations make little contribution to the torque along

the experimental trajectory, but are precisely the combinations most sensitive

to unmodeled dynamics. The existence of exciting trajectories shows that all I
combinations contribute torque along some trajectories. If a large misadjustment

is introduced by fitting weakly excited parameter combinations to unmodeled

dynamics, it may become a large torque error when that combination of parameters

is excited along some different, possibly neighboring trajectory. Finally, there

is no logical connection between the basis functions of the dynamic model and

the unmodeled dynamics. It would be more reasonable, if one wished to fit the
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unmodeled dynamics, to choose some simple, orthogonil functions rather than such

arcane products of dynamic modeling as {2 14 3q sin2 (2q)(1 - 2sin2 (3q))}.

If tracking error is to be uscd as a measure of the quality of an identification al-

gorithm, a trajectory different from the one over which the identification experiment

was conducted should be used for demonstration. Otherwise unmodeled dynamics

and the trajectory specific nature of the model must be addressed. For adaptive

control algorithms, the transient error that occurs when a shift is made from

one path to another, or the range of parameters identified when several different

trajectories are used are far better measures of the quality of the model than is

steady state tracking error on a repeated trajectory. It has been suggested that

the parameters arriving at some steady state value in a sequential identification

algorithm indicates that the algorithm has converged. The results presented here

show that in practical situations the parameter convergence rates can vary from

slow direction to fast direction by more than three orders of magnitude. No

experiment presented has been run as long as the cases studied indicate is required

for convergence.

14.3 Adaptive Control and Reduced Model Order

If the engineer is not free to chose the experimental trajectory, as will be the

case with adaptive control in the work place, evaluating the conditioning of the IR

matrix will allow a determination of how many parameters may be adjusted. One

might determine that a pick and place maneuver which is not sufficiently'exciting

to identify the parameters of the entire manipulator, might be sufficiently exciting

to identify the mass of a new object in grasp.
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One possible riterion for the elimination of parameters is whether the parameter

itself is small. The explicit dynamic model of the serial Asada arm, [Armstrong 87;

Atkeson, An and Hollerbach 86], shows that 6 of the inertial parameters depend

only upon the off-diagonal inertia dyadic terms and center of gravity cross product

terms. These parameters are zero in the CAD generated parameters, owing to the

symmetry of the Asada arm. Eliminating these parameters from the model reduces

the problem from 15 parameters to 9, and reduces the x[R] of the best MIT/Asada

arm identification trajectory from 5,700 to 154. If only nine parameters were

identified, the best MIT/Asada arm identification trajectory would have provided

sufficient data to estimate the parameters with a relative deviation of ± 1.2%,

rather than ± 8%. More importantly, the bias susceptibility would be cut from

25 to 6.5. Even though eliminating off-diagonal inertial terms might introduce

some unmodeled dynamic forces, if they are in fact non-zero, the reduction in bias

susceptibility will almost certainly assure improved model accuracy over a large

trajectory set.

14.4 Conclusions

Experimental noise poses a substantial challenge to the accurate identification

of inertial parameters. We have seen that the accuracy of the identification is

linked to the conditioning of the input correlation matrix and that this matrix

is well conditioned only for very special choices of trajectory. The implication is

that identification of all of the parameters of a manipulator dynamic model may

not be experimentally feasible and that identification of reduced models and direct

measurement of some parameters should be considered.



Bibliography

An, C.H., Atkeson, C.G. and Hollerbach, J. M. 1985 (December).
"Estimation of Inertial Parameters of Rigid Body Links of Manipulators", Proc.
of the 24th Conf. on Decision and Control, Fort Lauderdale, Florida: IEEE, pp.
990- 1002.

Anderson, B.D.O., Bitmead, R.R., Johnson, C.R. Jr., Kokotovic, P.V.,
Kosut, R.L., Mareels, I.M.Y., Praly, L. and Riedle, B.D. 1986.
Stability of Adaptive Systems, Cambridge: MIT Press.

Armstrong, B., Khatib, 0. and Burdick, J. 1986 (April 7-10).
"The Explicit Dynamics Model and Inertial Parameters of the PUMA 560
Arm," Proc. 1986 Inter. Conf. of Robotics and Automation, San Francisco:
IEEE.

Armstrong, B. 1987 (March 31 - April 3).
"On Finding Exciting Trajectories for Identification Experiments Involving
Systems with Non-Linear Dynamics," Proc. of the 1987 IEEE International
Conf. on Robotics and Automation, Raleigh, N.C.: IEEE, pp. 1131 - 1139.

Asada, H. and Youcef-Toumi, K., 1984. 0

"Analysis and Design of a Direct-Drive Arm with a Five-Bar Parallel Drive
Mechanism, " ASME Journal of Dynamic Systems, Measurement and Control,
v. 106, pp. 225-230.

Atkeson, C.G. An, C.H. and Hollerbach, J. M. 1986 (Fall).
"Estimation of Inertial Parameters of Manipulator Loads and Links ", Inter.
Journal of Robotic Research 5(3)101:119.

181 1



182 Bibliography Section II. Excitation

Bryson, A.E. and Ho, Y. 1975.
Applied Optimal Control, New York: Hemisphere Publishing Co.

Craig, J.J. 1986.
"Adaptive Control of Mechanical Manipulators," PhD Thesis, Electrical Engi-
neering Dept., Stanford Univ.

Craig, J.J., Hsu, P. and Sastry, S.S. 1987 (Summer).
"Adaptive Control of Mechanical Manipulators," International Journal of
Robotics Research, 6(2)16:28.

Finn, J.D. 191974.
A General Model for Multivariate Analysis, New York: Holt Rinehart and
Winston, inc.

Hsu P., Bodsom, M., Sastry, S. and Paden, B. 1987 (March 31 - April 3).
"Adaptive Identification and Control for Manipulators without Using Joint
Accelerations," Proc. of the 1987 Inter Conf. on Robotics and Automation,
Raleigh, N.C.: IEEE, pp. 1210 - 1216.

Kalaba, R. and Spingarn, K. 1982.
Control, Identification, and Input Optimization, New York: Plenum Press.

Kendall, M. G. and Stuart, A. 1973.
The Advanced Theory of Statistics, New York: Hafner Publishing Co.

Kohsla, P.K. and Kanade, T. 1985 (December).
"Parameter Identification of Robot Dynamics," Proc. of the 24th Conf. on
Decision and Control, Ft. Lauderdale: IEEE.

Ljung, L. 1987.
System Identification: Theory for the User, Englewood Cliffs, New Jersey:
Prentice-Hall, Inc.

l 1 ... I'"" " *T' ' .. Y,". "I



Section II: Excitation Bibliography 183

Mareels, I.M.Y, Bitmead, R.R., Gevers, M., Johnson, C.R. Jr., Kosut,
R.L. and Poubelle, M.A. 1987 (January).
"How Exciting can a Signal Really Be?," Systems & control Letters, 8(3)197:205.

Mendel, J.M. 1973.
Discrete Techniques of Parameter Estimation, New York: Marcel Dekker, Inc.

a
Middleton, R.H. and Goodwin, G.C., 1988.

"Adaptive Computed Torque Control for Rigid Link Manipulations," Systems

& control Letters, 10(1)9:16. 0

Mukerjee, A. and Ballard, D. 1985 (April 7-10).
"Self-Calibration in Robot Manipulators," Proc. of the 1986 Inter. Conf. on

Robotics and Automation, San Francisco: IEEE.

Neuman, C.P. and Khosla, P.K. 1985 (May 29-31).
"Identification of Robot Dynamics: An Application of Recursive Estimation,"
Proc. of the Fourth Yale Workshop on Applications of Adaptive Systems Theory.
Narendra, K.S. (ed.); Yale University, New Haven, Conn.

Olsen, H.B. and Bekey, G.A. 1986 (March 31 - April 3).
"Identification of Robots Dynamics," Proc. of the 1986 Inter. Conf on Robotics
and Automation, San Francisco: IEEE.

Olsen, H.B. and Bekey, G.A. 1985 (April 7-10).
"Identification of Parameters in Models of Robots with Rotary Joints," Proc.
of the 1985 Lnter. Conf. on Robotics and Automation, St. Louis: IEEE.

Press, J. 1972.
Applied Multivariate Analysis, New York: Holt, Rinehart and Winston, Inc.

Sastry, S.S. 1984.
"Model-Reference Adaptive Control-Stability, Parameter Convergence and Ro-
bustness," IMA J. of Mathematical Control & Information, 1984(1)27:66.



184 Bibliography Section II: Excitation

Slotine, J.J.E. and Li, W. 1986.
"On The Adaptive Control of Robot Manipulators," Proc. A.S.M.E. Winter
Annual Meeting, Anaheim, Ca.

Slotine, J.J.E. and Li, W. 1987a.
"Adaptive Strategies in Constrained Manipulation," Proc. of the 1987 Inter.
Conf. on Robotics and Automation, Raleigh, N.C.: IEEE, pp. 595-601.

Slotine, J.J.E. and Li, W. 1987b.
"Adaptive Manipulator Control: a Case Study," Proc. of the 1987 Inter. Conf.
on Robotics and Automation, Raleigh, N.C.: IEEE, pp. 1392-1400.

Tarn, T.J., Bejczy, A.K., Han, S. and Yun, X. 1985 (September).
"Inertia Parameters of PUMA 560 Robot Arm," Robotics Laboratory Report,
SSM-RL-85-01, Dept. of Systems Science and Mathematics, Washington Univ.
St. Louis, Mo.

Widrow, B., McCool, J.J., Larimore, M.G. and Johnson, C.R. Jr. 1976
(August).
"Stationary and Non-stationary Learning Characteristics of the LMS Adaptive
Filter," Proceedings of the IEEE, 45(8)1151:62.

Widrow, B. and Stearns, S.D. 1985.
Adaptive Signal Processing, Englewood Cliffs: Prentice Hall Inc.

I


